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Abstract

We study the inference problem of volatility functionals by the Fourier transform method.
Volatility functionals are foundations of principal component analysis, generalized method of mo-
ments, continuous-time linear regression, et cetera. Under conditions, this spectral approach is
consistent and limit distributions are available. When observations are synchronous, the Fourier
transform method attains both the optimal convergence rate and the efficiency bound in the sense
of Le Cam and Hájek. A salient advantage is that the spectral approach harnesses the power
of harmonic analysis to handle missing data and asynchronous observations without any artificial
time alignment nor data imputation. Asynchronous and missing data as a form of noise produces
“interference” in the spectrum estimation and impacts on the convergence rate. Besides theoretical
findings, the main methodological contribution is to extend applications of volatility functionals to
high-frequency datasets in which irregular and asynchronous observations are prevalent.

Keywords: functional estimation, Fourier transform, volatility, stable central limit theorems, asyn-
chronicity, interference.

1 Introduction

Volatility inference from high-frequency financial data have drawn vigorous academic efforts since
the beginning of this millennium. Volatility is a pivotal measure of risk, and the pillar of many
financial models. High-frequency datasets offer promising venues for accurate volatility proxies. Early
developments focused on integrated volatility (Andersen et al., 2001, 2003; Barndorff-Nielsen and
Shephard, 2002, 2004). More recent literature advanced toward the estimation of spot volatility (Fan
and Wang, 2007; Kristensen, 2010; Alvarez et al., 2012; Aı̈t-Sahalia and Jacod, 2014; Mancini et al.,
2015; Bibinger et al., 2019). Nowadays, the estimation of integrated volatility functional begin to
receive a lot of attention (Jacod and Rosenbaum, 2013; Renault et al., 2017; Li and Liu, 2017; Yang,
2018; Chen, 2018; Li et al., 2019).

The integrated volatility functional is defined as

S(g)T =

∫ T

0
g(c(t)) dt, (1.1)

where c(t) is the spot volatility matrix (instantaneous covariance at time t) of a continuous multivariate
Itô semimartingale; g(·) is a smooth functional of econometric interests, for instance, g could be the
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mapping from the volatility matrix to spot betas, or the mapping from the volatility matrix to its
distinct eigenvalues or the corresponding eigenvectors, and so forth.

What are the motivations for studying volatility functionals? Many financial time series applica-
tions can be formulated as volatility functionals. Their importance and multifarious utilities lie in
the fact that volatility is one of the central concepts in modern-day financial theories and practices.
Many empirical investigations are conducted by measuring volatility, examples include but not limited
to measuring market risk, model calibration, portfolio selection, option pricing. Recent applications
of volatility functionals include principal component analysis (Aı̈t-Sahalia and Xiu, 2019), linear re-
gression (Li et al., 2017), specification tests (Li et al., 2016), generalized method of moments (Li and
Xiu, 2016). Volatility functionals can also be used in quantifying statistical uncertainties of various
volatility estimators, such as quarticity.

What have been done about volatility functional inference? Previously, Jacod and Rosenbaum
(2013) proposed a nonparametric plug-in methodology for functional estimation, where the plug-ins
are finite differences of realized variances (hereafter RV). The Riemann sum of functionals of plug-ins
with explicit bias correction satisfy an asymptotic theory which is rate-optimal and semiparametrically
efficient. Recently, Li et al. (2019) introduced jackknife for bias correction and a simulation-based
method for variance estimation, which are derivative-free and greatly facilitate applications. Li and
Liu (2017) studied efficient functional estimation when volatility exhibits long-memory property, Yang
(2018) utilized matrix calculus to ease the burden of computing derivatives and removed various bias
terms to allow a more flexible range of the tuning parameter. More recently, Chen (2018) used pre-
averaging method to provide noise-robust and rate-optimal functional estimators and extends the
inferential theory of volatility functionals to the noisy setting.

So far, the methods and inferential theories of volatility functionals rely on the setup that the data
are synchronous, thus the current applications of volatility functionals have to require some synchro-
nization procedures before calculating the estimators. Some synchronization procedures, including
the previous-tick method, result in reduced sample sizes and possible synchronization bias such as the
Epps effect. The loss of data and bias become more pronounced for data of illiquid assets.

What are new in this paper? In this paper, we employ ideas and tools from harmonic analysis
to study the statistical inference of volatility functionals of the form (1.1). Our methodology enables
accurate estimation and valid inference using Fourier transform. We employ the Fourier transform to
translate the information contained in the data from the time domain to the frequency domain. This
methodology can handle irregular and asynchronous observations from multiple time series. The most
significant advantages of the frequency-domain methodology include the following:

• the frequency-domain technique for estimating spot volatility are based on the integration-type
operations (Fourier transform is a integral transform) rather than finite differences of RVs used
by time-domain techniques, thus it is numerically more stable in many scenarios;

• operations in the frequency domain bypass the troublesome asynchronicity encountered in the
time domain and circumvent data synchronization and imputation, thereby offer an elegant
approach to harness more prevalent asynchronous data.

To demonstrate, figure 1 compares the estimates of one volatility trajectory by finite differences of
RV and the Fourier transform method. In contrast to the RV-based estimates, the Fourier transform
method has much less jiggling and shows high fidelity to the true sample path of volatility, with a
proper choice of the tuning parameters.

In addition to the methodological contribution, this paper includes the following results:
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Figure 1: Spot volatility estimator: realized variance and Fourier transform
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The sample path of volatility in the simulation is labeled by c, it is driven by a fractional Brownian
motion with the Hurst parameter H = .56; the estimate ĉRV is by finite differences of RVs which

form a rough path; the estimates ĉFM is by the Fourier transform method.
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1. identifying the finite-sample mean-square rate of the spot co-volatility estimation when the data
are observed asynchronously; due to asynchronous observations the rate is different from the
rate established by Mancino and Recchioni (2015) in the univariate setting;

2. establishing asymptotic distributional results of functional estimation, revealing: (1) convergence
rates of functional estimators as determined by a tuning parameter in the frequency domain and
(2) asymptotic variances and how they are impacted by the temporal spacing of observations;

3. discovering the fundamental limits on the amount of frequency-domain information that can be
utilized without producing bias in the asynchronous setting and the resultant convergence rate
of the Fourier transform method;

4. achieving the optimal convergence rate and the efficiency bound as Jacod and Rosenbaum (2013),
Li et al. (2019) when the observations are synchronous; in the case of asynchronous observations
we show the functional estimator can converge with the optimal rate but is biased.

The methodology and inferential theory of this paper have their roots in several foundational
papers. The nonparametric plug-ins are due to Malliavin and Mancino (2002, 2009), the former
proposed a spot volatility estimator using trigonometric series based on the premise of Fourier analysis,
the later formulated this method in terms of complex exponentials; the Fourier estimation method
for volatility was further developed by Clément and Gloter (2011); Cuchiero and Teichmann (2015).
The asymptotic results are central limit theorems of the stable type, cf. Jacod (1997); Jacod and
Protter (1998) provided stable convergence theorems for discretized solutions to stochastic differential
equations.

This paper is organized as follows:

1. section 2 sets up notation and states assumptions for the rest of the paper, it serves as a reference
session and can be skipped in the first reading;

2. section 3 formally introduces and explains the frequency-domain method for volatility matrix;

3. section 4 establishes the mean-square rate of spot volatility matrix in the asynchronous setting;
and shows the consistency of estimators of volatility spectrum, spot volatility and volatility
functionals;

4. section 5 establishes the second-order asymptotic results, particularly section 5.1 shows the stable
central limit theorem for functionals of an element in volatility matrix, section 5.4 gives the result
for general functionals of the whole volatility matrix and shows the Fourier transform method
enjoys the optimal rate and achieves the efficient bound in the synchronous setting.

2 Setting

This paper considers time series data from a fixed time window that can be modeled by a continuous
Itô semimartingale defined on a filtered probability space:

X(t) = X(0) +

∫ t

0
b(u) du+

∫ t

0
σ(u) dW (u), (2.1)
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where b(u) ∈ Rd, σ(u) ∈ Rd×d′ with d ≤ d′, W is a d′-dimensional standard Brownian motion; the
spot volatility (instantaneous covariance matrix) is c(u) = σ(u)σ(u)T ∈ S+

d , where S+
d denotes the

convex cone of d× d positive-semidefinite matrices.
Generally, our observations from different components of the multivariate process (2.1) are asyn-

chronous, and the sample sizes are different across dimensions. Next, we will introduce the notation
for the irregular and asynchronous temporal spacing.

2.1 Notations

Here are the mathematical notations we will use. i =
√
−1 is the imaginary unit; for a complex number

z, z is its complex conjugate; for a real number x, bxc is its integer part; for a matrix L, LT is its
transpose; for x, y ∈ R, x∧y = min(x, y), x∨y = max(x, y); an � bn means both {an/bn} and {bn/an}
are bounded sequences. For a function F defined on Rd (resp. Rd×d), ∂jF (resp. ∂jkF ) is its derivative

with respect to the j-th (resp. (j, k)-th) argument.
P−→ represents convergence in probability,

L−s−→
stands for stable convergence in law, MN (µ,Σ) represents a mixed normal distribution with random
mean µ and covariance Σ.

Below are notations for observations and temporal spacing used throughout this paper:

• if U is a Rd-valued process, Uj is the j-th component of U ; if U is a Rd×d or Rd×d′-valued process,
Ujk and Uj· are the (j, k)-th component and the j-th row of U , respectively;

• Tj = {τ jh, h = 0, · · · , nj} is the set of observation times of the j-th component process Xj ;

without loss of generality, by time translation let minj τ
j
0 = 0 and maxj τnj = T , i.e. the

observation period is [0, T ];

• Ijh = (τ jh−1, τ
j
h] is time interval between two consecutive observations of Xj ;

• ∆j
h = τ jh − τ

j
h−1 is the length of Ijh, let ∆j = maxh ∆j

h be the observational mesh of Xj ;

• n = minj nj and n = maxj nj are the smallest and largest sample sizes among all the dimensions
respectively; ∆(n) = maxj ∆j is the largest mesh size;

• δjh is the first-order difference operator according to the observational times of Xj , i.e., given a

generic scalar process U , δjh(U) = U(τ jh) − U(τ jh−1) is the increment of the process U over the

time interval Ijh.

2.2 Assumptions

Here we state the assumptions on the spacing of observational times, the sample paths of the volatility
process, and a regularity condition on the functionals.

In this paper, we study the in-fill asymptotics, i.e., we suppose T is a finite constant, and within
the finite time interval [0, T ] the smallest sample size of all dimensions n → ∞ (∆(n) → 0) in the
asymptotic analysis. We assume that, for each n the temporal spacings of all dimensions are of the
same magnitude. We also need to assume that the observational times are independent of the sample
path (exogenous), this precludes the possibility that the observational times of the process depends
on the process itself, for example, hitting times.
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Assumption T (temporal spacing). ∆(n)→ 0 as n→∞. For some finite constant K,

∆(n)

minj minh ∆j
h

< K.

Let F = σ(Xt, t ∈ [0, T ]) and G = σ(Tj , j = 1, · · · d), ∀A ∈ F , B ∈ G, A and B are independent
events.

The following assumption is on sample path continuity and local boundedness in a convex subspace.

Assumption U (volatility continuity and local boundedness). There is a sequence of pairs (τm,Sm),
where τm is a stopping time and τm ↗∞, each Sm ⊂ S+

d is a compact subset of positive semidefinite
matrices such that

t ∈ [0, τm]⇒ ‖b(t)‖+ ‖c(t)‖ ≤ m, c(t) ∈ Sm.

Given a continuous function f , its modulus of continuity ωf (∆) is defined as

ωf (∆) = sup
|x−y|≤∆

‖f(x)− f(y)‖. (2.2)

In order to establish an inferential theory, it is necessary for us to put constraints on the smoothness
of the sample paths of volatility.

Assumption V-α (volatility regularity). The sample path of the volatility c is continuous almost
surely. The modulus of continuity of c satisfies

ωc(∆) ≤ ∆α, α > 0.

Remark 1. Assumption T, U are needed for consistency; assumption V-α with α > 1/2 is further
needed for central limit theorems. Assumption U, V-α can be rephrased that the volatility as a
function of time belong to the Hölder ball

Hα(K) :=

{
f ∈ C([0, T ])

∣∣∣∣∣ sup
t∈[0,T ]

‖f(t)‖+ sup
t6=u

‖f(t)− f(u)‖
|t− u|α ≤ K

}

for some K > 0.

We require that the functionals g : S+
d 7→ Rr satisfy

g ∈ C2(S) (2.3)

where S is a compact subspace of S+
d , S ⊃ ∪mSεm for some ε > 0, Sεm =

{
A ∈ S+

d : infM∈Sm ‖A−M‖ ≤
ε
}

is the ε-enlargement of the subspace Sm and Sm is identified in assumption U. Note that c(t) ∈ Sm
if t ≤ τm, hence any consistent estimation of c(t) lies in the subspace Sεm in large samples.

For instance, differentiable functions whose derivatives are of polynomial growth satisfy (2.3), i.e.,
if for some constants K > 0 and r ≥ 2,

‖∂hg(c)‖ ≤ K(1 + ‖c‖r−h), h = 0, 1, 2,

then g ∈ C2(S).
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3 Fourier Method

Given a functional of econometric interest and a nonparametric estimator of spot volatility, we con-
struct our functional estimator via the plug-in framework of Jacod and Rosenbaum (2013). In this
framework, computing a functional estimator entails (i) computing the nonparametric estimates of
spot volatility at various time points; (ii) plugging the nonparametric estimates into the functional
and computing the Riemann sum.

The spot volatility estimator is a crucial element in volatility functional estimation. For a given
functional, the large sample properties of the functional estimator largely relies on the asymptotics
of the nonparametric estimator of spot volatility. In this paper, to cope with asynchronicity and
generalize the framework of Jacod and Rosenbaum (2013), we choose the Fourier method to compute
nonparametric estimates of spot volatility. The Fourier method for volatility function estimation
comprises of 3 steps:

1. Estimate the Fourier coefficients of volatility (volatility spectrum);

2. Estimate the spot volatility from the estimates of its Fourier coefficients;

3. Plug in the estimates of spot volatility and evaluate the functionals.

3.1 Volatility spectrum by Bohr convolution

Before presenting and explaining the Fourier method, we give a quick review on Fourier transform,
Fourier series, and a result in approximation theory. Given a function f defined on [0, T ], for q ∈ N+,
define its Fourier transform and Fourier-Stieltjes transform as

F (f)q :=
∫ T

0 f(t) e−i2πqt/T dt

F (df)q :=
∫ T

0 e−i2πqt/T df(t)

If f(0) = f(T ), it can be expanded into Fourier series:

f(t) =
1

T

∞∑
q=−∞

F (f)q e
i2πqt/T (3.1)

Define the following function approximation involving finite Fourier series1

f̂M (t) :=
1

T

M−1∑
q=−M+1

(
1− |q|

M

)
F (f)q e

i2πqt/T (3.2)

By (A.5) and lemma 1, we have for some K > 0,

sup
t∈[0,T ]

∣∣f̂M (t)− f(t)
∣∣ ≤ Kωf (1/M), (3.3)

where ωf is the modulus of continuity defined in (2.2).

1It is the Cesàro sum on Fourier series. We are using Cesàro sum to ensure uniform convergence of (3.3) and the
Fourier method (3.7) for spot volatility; see section 4.2. Its effect can be expressed through Fejér kernel. Fejér kernel is
a summability kernel (also a delta sequence) whose basic properties are summarized in appendix A.
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In statistical applications, according to Malliavin and Mancino (2002, 2009), we can approximate
the Fourier-Stieltjes transform of X and the Fourier transform of the process c over [0, T ] by the
following quantities:

F̂ (dXj)
n
s ≡

nj∑
h=1

δjh(Xj) e
−i2πsτ jh/T , (3.4)

F̂ (cjk)
n,N
q ≡ 1

2N + 1

N∑
s=−N

F̂ (dXj)
n
q−s × F̂ (dXk)

n
s . (3.5)

We call (3.5) as spectrum estimator. The available frequency coordinates for F̂ (dXj)
n
s are 0,±1, · · · ,

±bnj/2c, and given N ≤ bnk/2c the available frequency coordinates for F̂ (cjk)
n,N
q are 0,±1, · · · ,

±(bnj/2c −N).

Remark 2. Park et al. (2016) generalized the Bohr convolution in volatility spectrum estimation by
applying a spectral kernel function Φ,

F̂ (cjk)
n,N
q ≡ 1

2N + 1

N∑
s=−N

Φ
( s
N

)
F̂ (dXj)

n
q−s × F̂ (dXk)

n
s

where the spectral kernel function Φ satisfies that
Φ(w) ≥ 0, w ∈ [−1, 1]∫ 1
−1 Φ(w) dw = 1∫ 1
−1wΦ(w) dw = 0∫ 1
−1 |Φ(w)|2 + |wpΦ(w)|2 dw <∞, p = 1, 2

(3.6)

The spectrum estimator (3.5) is a special case with the constant spectral kernel function Φ = 1. For
our purpose of volatility functional estimation, we choose to use (3.5). The reason is that the constant
spectral kernel function minimizes the asymptotic variance of our volatility functional estimator. The
variance-minimizing property is implied by (3.6) and Parseval’s identity.

3.2 Spot volatility by Fourier transform

Based on the Fourier coefficient estimates F̂ (cjk)
n,N
q ’s, the spot volatility can be estimated by Fourier-

Fejér inversion

ĉn,N,Mjk (t) ≡ 1

T

M−1∑
q=−M+1

(
1− |q|

M

)
F̂ (cjk)

n,N
q ei2πqt/T (3.7)

where M ≤ bnj/2c −N + 1. In the rest of this paper, we call (3.7) as spot estimator.
By defining the following vector and matrix

F̂ (dX)ns ≡
[
F̂ (dX1)ns , · · · , F̂ (dXd)

n
s

]T
F̂ (c)n,Nq ≡ 1

2N + 1

N∑
s=−N

F̂ (dX)nq−s · F̂ (dX)n,Ts , (3.8)
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we can express the elementwise defined estimator ĉn,N,M (t) =
[
ĉn,N,Mjk (t)

]
jk

as

ĉn,N,M (t) =
1

T

M−1∑
q=−M+1

(
1− |q|

M

)
F̂ (c)n,Nq ei2πqt/T

Remark 3. The estimator F̂ (dXj)
n
s is the discrete Fourier transform (hereafter DFT) of the incre-

ments of Xj ; the spectrum estimator F̂ (cjk)
n,N
q is based on the idea akin to that of Bohr convolution,

i.e., a scaled convolution of the finite sequences F̂ (dXj)
n
s ’s and F̂ (dXk)

n
s ’s; the spot estimator ĉn,N,Mjk (t)

is the M -order Cesàro sum of inverse discrete Fourier transforms (hereafter IDFT) of the Fourier co-
efficient estimates.

Remark 4. We have 1 tuning parameter N for the spectrum estimator F̂ (cjk)
n,N
q and 2 tuning

parameters N and M for the spot estimator ĉn,N,Mjk (t).

• N dictates the amount of frequency information (Fourier-Stieltjes transform estimates) to use
in estimating the Fourier coefficients of volatility; it can also be interpreted as the “level of
averaging”, by the law of large numbers, a higher N leads to a more accurate Bohr convolution
as an estimator; however, each item in the Bohr convolution is affected by asynchronicity, N
can not be too large, this is quantitatively discussed to the first order in section 4.1 and to the
second order in section 5.5.

• M is the number of Fourier coefficient estimates used in approximating the spot volatility; the
more harmonics are taken into account the better the approximation can be, yet we only possess
estimates of Fourier coefficients, so the larger M is the more errors are accumulated; we require
M to be large enough but not too large, see (3.9).

To ensure the consistency of the spectrum estimator and the asymptotic mixed normality of volatility
functional estimators, we require{

N →∞
N ≤ bn/2c −M + 1,

{
M4α/N →∞
M2/N → 0,

(3.9)

where α is specified in assumption V-α.

3.2.1 The relation with kernel methods and advantages

Here we provide some intuition for the spot estimator in the simplest case d = 1 and compare it with
kernel estimators of volatility.

Suppose we observe the univariate process at times {τ0, τ1, · · · , τn}, and let δj = δ1
j be the first-

order difference operator. Note

F̂ (c)n,Nq =

n∑
h=1

e−i2πqτh/T δh(X)2 +
1

2N + 1

∑
|s|≤N

∑
h6=v

e−i2πqτh/T ei2πs(τh−τv)/T δh(X)δv(X)

we can write

F̂ (c)n,Nq =

n∑
h=1

e−i2πqτh/T δh(X)2 +
∑
h6=v

e−i2πqτh/TDN
(τh − τv

T

)δh(X)δv(X)

2N + 1
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Figure 2: Dirichlet kernels and Fejér kernels
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where DN (·) is a kernel function defined later in (5.1). Furthermore, based on the definition (3.7), one
has

ĉn,N,M (t) =
1

T

n∑
h=1

FM
( t− τh

T

)
δh(X)2 +

1

T

∑
h6=v

FM
( t− τh

T

)
DN

(τh − τv
T

)δh(X)δv(X)

2N + 1
(3.10)

where FM (·) is another kernel function defined later in (A.1).
Figure 2 shows some examples of the kernels DN (·) and FM (·). There are some wiggles away from

the origin due to the fact that they are trigonometric polynomials. As N and M become large, the
kernels concentrate more around the origin.

If one interprets δh(X)2 as a proxy of c(τh), then F̂ (c)n,Nq as an estimator of the Fourier coefficient
is a combination of the DFT of the proxies δh(X)2’s and cross terms involving the sample auto-
covariances weighted by the kernel DN (·):

F̂ (c)n,Nq = DFT of volatility proxies + weighted sum of sample auto-covariance

similarly, ĉn,N,M (t) can be interpreted as a kernel estimator plus cross terms. The kernel is FM (·) and
the cross terms are sample auto-covariances weighted by both DN (·) and FM (·):

ĉn,N,M (t) = a kernel estimator + weighted sum of sample auto-covariance

The cross term of weighted sum brings additional variation to the estimator (3.7) as opposed to
the kernel estimators; see Mancini et al. (2015). Naturally we shall ask: given the possible variations
from the cross terms, why not just use the DFT of volatility proxies δj(X)’s to estimate the Fourier
coefficients? Why not just use the kernel estimator to estimate the spot volatility?

Here are 2 significant merits of the spot estimator (3.7) as compared to kernel estimators:

• In multivariate settings, (3.7) can estimate the spot co-volatility when different processes are
observed asynchronously, because the Bohr convolution is computed in the frequency domain
and one does not need to worried about data misalignment and temporal irregularity in the time
domain; however many other estimators require data alignment as a prerequisite.

• When the sampling frequency is high enough so that microstructure noise ε is required in the
model, the estimators (3.5) and (3.7) are still consistent with smaller choices of N and M ;
whereas δj(X + ε)2 can no longer be a good proxy for volatility.
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3.3 Volatility functionals estimator by Fourier plug-ins

Based on the plug-in framework for functional estimation, we define the estimator of volatility func-
tionals as

Ŝ(g)nT ≡
B−L∑
h=1+L

g
(
ĉn,N,M

(hT
B

))T
B

(3.11)

We call (3.11) as functional estimator. We have 4 tuning parameters for the functional estimators,
namely N,M,B,L. The tuning parameters N and M are inherited from the spot estimator ĉn,N,M ,
see remark 4. The tuning parameters B and L dictate how to construct the functional estimators:

• B is the number of plug-ins in the Riemann sum; a higher B results in a more accurate approx-
imation to the integral, with the cost of higher computational load;

• L is the bandwidth at the boundaries of the time window, in which no spot estimate will be
taken in the Riemann sum.

The boundary values of a volatility sample path c(0) and c(T ) are different in general. However, the
spot estimator (3.7) is based on trigonometric series and is periodic by construction, hence it holds
ĉn,N,M (0) = ĉn,N,M (T ). Because of this artifact, no spot estimate near the boundaries will be used in
the functional estimator (3.11).

We require the tuning parameters B and L satisfy
B/N1/2 →∞
L = 0 if c(0) = c(T )
L � B/M if c(0) 6= c(T ).

(3.12)

To summarize, the Fourier method for volatility functionals can be implemented in the following
algorithm in pseudo-code:

Algorithm 1. Read in the data vector {Xj(τ
j
h)}h=0,··· ,nj

, j = 1 · · · , d;

1. Input the tuning parameters N , M satisfying (3.9);

2. for j = {1, · · · , d}:

• Compute F̂ (dXj)
n
s , s = 0,±1, · · · ,±bnj/2c according to (3.4), by the FFT algorithm;

3. for q = {0,±1, · · · ,±bminj nj/2c}:

• Compute the complex-valued matrix F̂ (c)n,Nq by (3.8);

4. Input the tuning parameters B, L satisfying (3.12);

5. Zero-pad2 symmetrically each sequence {F̂ (cjk)
n,N
q } to be of length B, and use the FFT algo-

rithm to compute ĉn,N,Mjk (hT/B), h = 0, · · · , B − 1;

6. Plug in ĉn,N,M (hT/B) to compute (3.11).

2Note that the required length of spot estimates is B and is usually higher than the number of Fourier coefficients.
Zero-padding plus FFT decrease the computational cost from O(BN) of a näıve algorithm to O(B ln(B)).
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4 Consistency

4.1 Consistent estimation of volatility spectrum

In this section, we discuss the convergence of F̂ (c)n,Nq to the true spectrum. Consistency of the
spectrum estimation has been shown by Malliavin and Mancino (2009). Here we will take a closer
look at the various components and causes of its estimation error.

First, we introduce a short-hand representation of (2.1):

X = X(0) +A+M,

where A(t) =
∫ t

0 b(u) du, M(t) =
∫ t

0 σ(u) dW (u).
We can write

F̂ (cjk)
n,N
q − F (cjk)q = R(0)n,Njk,q +R(1)n,Njk,q +R(2)Njk,q, (4.1)

where

R(0)n,Njk,q =
1

2N + 1

∑
|s|≤N

[
F̂ (dXj)

n
q−sF̂ (dXk)

n
s − F̂ (dMj)

n
q−sF̂ (dMk)

n
s

]
R(1)n,Njk,q =

1

2N + 1

∑
|s|≤N

[
F̂ (dMj)

n
q−sF̂ (dMk)

n
s − F (dMj)q−sF (dMk)s

]
R(2)Njk,q =

1

2N + 1

∑
|s|≤N

F (dMj)q−sF (dMk)s − F (cjk)q.

Essentially, (4.1) decomposes the error in volatility spectrum estimation into 3 effects:

• R(0)n,Njk,q is the effect of the drift term;

• R(1)n,Njk,q is the effect of discrete observations of the continuous-time model (discretization &
asynchronicity errors);

• R(2)Njk,q is the effect due to finite Bohr convolution (statistical error).

Under assumption T, U, according to the proof in appendix B, ∃K > 0, we have

E
(
|R(0)n,Njk,q |

)
≤ KTN−3/4

E
(
|R(1)n,Njk,q |

)
≤ KN∆(n)

E
(
|R(2)n,Njk,q |

)
≤ KTN−1/2

 . (4.2)

Proposition 1. If assumption T, U hold, then ∃K > 0, such that

E
(∣∣F̂ (cjk)

n,N
q − F (cjk)q

∣∣) ≤ K[N∆(n) + TN−1/2
]
.

By (3.9) and Markov’s inequality, we have the following corollary.

Corollary 1. If N satisfies (3.9), under assumption T, U,

F̂ (cjk)
n,N
q

P−→ F (cjk)q, q = 0,±1, · · · ,±(bnj/2c −N).
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Table 1: approximate magnitude: estimation errors of volatility spectrum
discretization &

error sources drift effect asynchronicity errors statistical error

magnitudes ≤ KN−3/4 ≤ KN∆(n) � N−1/2

Remark 5. For volatility spectrum estimation on a finite time horizon, we summarize the magnitudes
(4.2) of various error terms in table 1, where K is some finite positive real number.

• The discretization effect summarizes how irregular and asynchronous observations bear on the
spectrum estimator. As it turns out, as long as N∆(n) → 0, the effect of temporal irregularity
and asynchronicity is asymptotically negligible; this is consistent with the finding of Clément
and Gloter (2011);

• The size of the drift effect is dominated by other terms regardless of the choice N . In subsequent
asymptotic analysis of the volatility spectrum estimator, we can safely assume, without loss of
generality,

X(t) = X(0) +

∫ t

0
σ(u) dW (u). (4.3)

Remark 6. Table 1 indicates that the size of N determines the convergence rate of the spectrum
estimator F̂ (cjk)

n,N
q :

• N = o(∆(n)−2/3) = o(n2/3) is a sufficient (not necessary) condition under which the asynchronic-
ity effect is (asymptotically) negligible compared with the statistical error; in this scenario, the
rate of convergence is N1/2 and is dictated by the statistical error of the finite Bohr convolution;

• if one take all the available information in the frequency domain by letting N = bn/2c −M + 1,
the spectrum estimator is biased due to asynchronicity, although the estimator converges with
a bias with the rate n1/2.

To avoid the asynchronicity bias, the convergence rate is less that n1/2. We call this phenomenon the
curse of asynchronicity. For volatility functionals using the Fourier transform method, we provide
a sufficient and necessary conditions for both consistency in section 4.2 and unbiased asymptotic
normality in section 5.1.

4.2 Consistent estimation of spot volatility and its functionals

In this section, we first state a result on the mean square rate of the spot volatility estimation, then
based on this mean square rate, we can guarantee the consistency both the spot estimator (3.7) and
the functional estimator (3.11).

Mancino and Recchioni (2015) proved the asymptotic normality and convergence rate for univariate
spot volatility. The next proposition extends their result on the mean square rate to the multivariate
and asynchronous settings.

Proposition 2. Under (2.1) and assumption T, U, V-α, there exists a finite positive constant K such
that ∀j, k = 1, · · · , d,

sup
t∈[M−1,T−M−1]

E
∣∣ĉn,N,Mjk (t)− cjk(t)

∣∣2 ≤ K(N4

n4
1{j 6=k} +M−2α +

M

N

)
;

13



additionally, if c(0) = c(T ),

sup
t∈[0,T ]

E
∣∣ĉn,N,Mjk (t)− cjk(t)

∣∣2 ≤ K(N4

n4
1{j 6=k} +M−2α +

M

N

)
.

Remark 7. The various terms in the upper bound in proposition 2 arise from estimation errors of
different natures, cf. (D.3) and (D.5). The sources of these estimation errors are:

• asynchronous observations;

• approximation by convolution with the Fejér kernel (one type of delta sequences in Fourier
analysis);

• statistical error in the form of stochastic integrals of the Fejér kernel with respect to Brownian
motion.

The magnitude of these estimation errors are summarized in table 2.

Table 2: approximate magnitude: estimation errors of spot volatility
error sources asynchronicity error delta sequence approximation statistical error

magnitudes � N2∆(n)2 �M−α �
√
M/N

According to proposition 2, we have the following corollary on the uniform consistency of the spot
estimator. This corollary generalizes Theorem 3.4 in Malliavin and Mancino (2009) to the case where
c(0) 6= c(T ). In the spirit of Theorem 2 of Park et al. (2016), it provides a more accurate result on
the “border effect” as a result of c(0) 6= c(T ).

Corollary 2. If (2.1) and assumption T, U are true, N and M satisfy (3.9), then

sup
t∈[M−1,T−M−1]

∥∥ĉn,N,M (t)− c(t)
∥∥ P−→ 0;

additionally, if c(0) = c(T ),

sup
t∈[0,T ]

∥∥ĉn,N,M (t)− c(t)
∥∥ P−→ 0.

Therefore, we have the consistency of the functional estimator.

Corollary 3. Assume (2.1) and assumption T, U, (2.3), N and M satisfy (3.9), B and L satisfy
(3.12), then

Ŝ(g)nT
P−→ S(g)T .

5 Stable Convergence and Asymptotic Normality

In this section, we provide the asymptotic distributions of the functional estimator (3.11) based on
Fourier series. We present limit theorems from the relative simple to the complicated: the univariate
setting, the bivariate setting, the multivariate setting with synchronous and asynchronous observations,
with N = o(n) and N � n.
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5.1 Functionals of univariate volatility

First of all, let’s consider a simple case - estimating functionals of one element in the volatility matrix.
The object to estimate is

S(g)jk,T =

∫ T

0
g
(
cjk(t)

)
dt,

where j, k = 1, · · · , d. The estimator is

Ŝ(g)njk,T ≡
B−L∑
h=1+L

g
(
ĉn,N,Mjk

(hT
B

))T
B
.

We first present the result for diagonal elements, and in this case the temporal spacing is easier to
deal with since the only issue is irregularity in the univariate setting. Then we present the result for
off-diagonal elements.

There is no particular reason to favor a regular time grid like {hT/B}h into which to plug spot
estimates. For the diagonal elements, one could also use the irregular observation times as the time
grid on which to compute the spot estimates:

S̃(g)njj,T ≡
nj−L∑
h=1+L

g
(
ĉn,N,Mjj (τh)

)
∆j
h.

The univariate functional estimators S̃(g)njj,T and Ŝ(g)njj,T share the same asymptotic distribution
with the same convergence rate.

Theorem 1. Assume (2.1), (2.3), assumption T, U, and assumption V-α with α > 1/2, c(0) = c(T ).
For j = 1, · · · , d, if we choose N = bnj/2c −M + 1 and the other tunning parameters in accordance
with (3.9), (3.12), then

n
1/2
j

[
S̃(g)njj,T − S(g)jj,T

] L−s−→ MN
(
0, V (g)jj,T

)
n

1/2
j

[
Ŝ(g)njj,T − S(g)jj,T

] L−s−→ MN
(
0, V (g)jj,T

)
,

where

V (g)jj,T = T

∫ T

0

[
∂g(cjj(t)) cjj(t)

]2
dt.

5.2 Scaled Dirichlet kernel

As trigonometric functions form the basis of Fourier analysis, the asymptotic bivariate and multivariate
results are based on trigonometric polynomials. The assumptions on temporal spacing are formulated
in terms of Dirichlet kernels. The q-order Dirichlet kernel is defined as

Dq(x) =
∑
|s|≤q

ei2πsx, (5.1)

and we have

Dq(x) =

{
sin[π(2q+1)x]

sin(πx) , x /∈ N
2q + 1, x ∈ N.

(5.2)
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Define step functions of time, for j = 1, · · · , d,

θnj (t) = inf
{
τ jh, t ≤ τ

j
h

}
∧ τ jnj . (5.3)

Based on the Dirichlet kernel and the step functions, define the shifted and scaled Dirichlet kernel

dn,Njk (t, u) =
1

2N + 1
DN

(θnj (t)− θnk (u)

T

)
, j, k = 1, · · · , d. (5.4)

The function dn,Njk (t, u) was introduced in Clément and Gloter (2011) and it is indispensable to the
asymptotic analysis in this paper. As Clément and Gloter (2011), we formulate the assumption on
the irregular and asynchronous observation times through the shifted and scaled Dirichlet kernel.

Assumption F (Fejér kernels of time). For j, k, l,m = 1, · · · , d, the quadratic integrals of dn,Njk and

dn,Nlm converge as n,N → ∞. Specifically, ∃ L1 functions θ̃jk,lm, θ́jk,lm, θ̌jk,lm, θ̀jk,lm, such that
∀t ∈ [0, T ], ∫ t

0
N

∫ u

0
dn,Njk (u, v) dn,Nlm (u, v) dv du

P−→
∫ t

0
θ̃jk,lm(u) du∫ t

0
N

∫ u

0
dn,Njk (u, v) dn,Nlm (v, u) dv du

P−→
∫ t

0
θ́jk,lm(u) du∫ t

0
N

∫ u

0
dn,Njk (v, u) dn,Nlm (u, v) dv du

P−→
∫ t

0
θ̌jk,lm(u) du∫ t

0
N

∫ u

0
dn,Njk (v, u) dn,Nlm (v, u) dv du

P−→
∫ t

0
θ̀jk,lm(u) du.

Remark 8. In order to have an intuitive understanding of assumption F, let’s look at the case

j = k = l = m. Assumption F implies N
∫ t

0 d
n,N
jj (t, u)2 du

P−→ θ̃11,11(t). Based on (5.4), (A.2) and
Riemann summation, we have

θ̃jj,jj(t) = lim
N→∞

N

2N + 1

∫ t

0
F 2N+1

( t− u
T

)
du,

where F 2N+1 is the Fejér kernel defined by (A.1). by the proof of lemma 5,

θ̃jj,jj(t) = θ́jj,jj(t) = θ̌jj,jj(t) = θ̀jj,jj(t) = T/4. (5.5)

(5.5) holds under assumption T and is independent of assumption F. Assumption F is the condition
by which (5.5) can be generalized to the multivariate setting.

Remark 9. The irregularity and asynchronicity in many time-domain techniques are formulated in
a notion called quadratic variation of time by Mykland and Zhang (2006). In the simplest case
j = k = l = m = 1, the quadratic variation of time H is a function of time defined as a limit (which
is assumed to exist and is differentiable):

H(t) = lim
n1→∞

n1

T

∑
τ1h≤t

(
τ1
h − τ1

h−1

)2
;
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in the case t ∈ [τ1
h−1, τ

1
h+1) and T = π, assumption F implies

θ̃11,11(t) = lim
N,n1→∞

N

(2N + 1)2

∑
τ1h≤θ

n
1 (t)

(
τ1
h − τ1

h−1

)sin[(2N + 1)(t− τ1
h)]2

sin(t− τ1
h)2

.

Both limits above are defined in probability. The counterpart of H(t) in assumption F is Θ̃11,11(t) :=∫ t
0 θ̃11,11(u) du. As we will see later, just as the time derivative H ′(t), the time derivative Θ̃′11,11(t) =

θ̃11,11(t) appears in the asymptotic variances.

5.3 Functionals of bivariate volatility

Now we move on to the limit theorem for functionals of co-volatilities (off-diagonal elements in the
volatility matrix). As it turns out, the asymptotic normality requires different conditions when the
observations are synchronous and asynchronous.

Assumption ST (synchronous observations). n1 = · · · = nd and minj τ
j
h = maxj τ

j
h for h = 1, · · · , n1.

Theorem 2. Assume (2.1), (2.3), assumption T, F, U, and assumption V-α with α > 1/2, c(0) =
c(T ), and choose the tunning parameters according to (3.9) and (3.12) with

• N ≤ b(nj ∧ nk)/2c −M + 1 if assumption ST holds,

• N = o((nj ∧ nk)4/5) if assumption ST does not hold,

then for j, k = 1, · · · , d,

N1/2
[
Ŝ(g)njk,T − S(g)jk,T

] L−s−→MN (0, V (g)jk,T
)
,

where

V (g)jk,T =

∫ T

0
∂g(cjk(t))

2 ×
{[
θ̃jk,jk(t) + θ̀jk,jk(t)

]
cjj(t) ckk(t) + 2θ̌jk,jk(t) cjk(t)

2
}

dt.

Remark 10. Compare theorem 1 and theorem 2, we can see that the asymptotic properties of func-
tionals acting on diagonal and off-diagonal elements are drastically different.

• Convergence rates. For functionals of diagonal elements, the convergence rate can be n
1/2
j by

choosing N as large as bnj/2c − M + 1; for functionals of off-diagonal elements, due to the
impact of asynchronous observations (also see remark 6), in order that the limit distribution is
a centered mixed normal, we can only choose N smaller than (nj ∧ nk)4/5 and the attendant
convergence rate is strictly less than (nj ∧ nk)2/5;

• Asymptotic variances. For functionals of diagonal elements, asymptotic variances are inde-
pendent of the temporal spacing; on the contrary for functionals of off-diagonal elements, the
temporal spacing leaves its imprint on asymptotic variances through θ̃jk,jk, θ́jk,jk, θ̌jk,jk, θ̀jk,jk
defined in assumption F.
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5.4 Functionals of multivariate volatility

Now, let’s look at the fully-fledged result. The object to estimate is S(g)T defined in (1.1), its estimator
is Ŝ(g)nT defined in (3.11). Our goal is to seek central limit theorems for functionals of a whole volatility
matrix in various circumstances.

Theorem 3. Assume (2.1), (2.3), assumption T, F, U, and assumption V-α with α > 1/2, c(0) =
c(T ), and choose the tunning parameters according to (3.9), (3.12) with

• N ≤ bn/2c −M + 1 if assumption ST holds,

• N = o(n4/5) if assumption ST does not hold,

then we have
N1/2

[
Ŝ(g)nT − S(g)T

] L−s−→MN (0, V (g)T
)
,

where

V (g)T =
d∑

j,k,l,m=1

∫ T

0
∂jkg(c(t)) ∂lmg(c(t))×

{[
θ̃jk,lm(t) + θ̀jk,lm(t)

]
cjl(t) ckm(t) +

[
θ́jk,lm(t) + θ̌jk,lm(t)

]
cjm(t) ckl(t)

}
dt. (5.6)

We have the following corollary which immediately follows from theorem 3 and lemma 5. It states
that when different time series are observed synchronously, the functional estimator based on the
Fourier transform method can be rate optimal and efficient.

Corollary 4. Assume (2.1), (2.3), assumption T, ST, U, V-α with α > 1/2, c(0) = c(T ). Choose
the tunning parameters according to (3.9), (3.12) with N = bn/2c −M + 1, we have

∆(n)−1/2
[
Ŝ(g)nT − S(g)T

] L−s−→MN (0, V (g)∗T
)
,

where

V (g)∗T =
d∑

j,k,l,m=1

∫ T

0
∂jkg(c(t)) ∂lmg(c(t))×

[
cjl(t) ckm(t) + cjm(t) ckl(t)

]
dt.

The convergence rate ∆(n)−1/2 � n1/2 is optimal and the asymptotic variance V (g)∗T achieves the
efficiency bound, cf. Jacod and Rosenbaum (2013) and Clément et al. (2013).

We provide an estimator of the asymptotic variance (5.6), which is defined as

V̂ (g)nT =

d∑
j,k,l,m=1

[
V̂ (0)n,N,M,B

jk,lm,T + V̂ (1)n,N,M,B
jk,lm,T

]
, (5.7)
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where

V̂ (0)n,N,M,B
jk,lm,T =

T

B

B∑
h=1

∂jkg(ĉn,N,M (th)) ∂lmg(ĉn,N,M (th)) ĉn,N,Mjl (th) ĉn,N,Mkm (th)

×Nδ(n)

bth/δ(n)c∑
v=1

[
dn,Njk (th, ϑv) d

n,N
lm (th, ϑv) + dn,Njk (ϑv, th) dn,Nlm (ϑv, th)

]
V̂ (1)n,N,M,B

jk,lm,T =
T

B

B∑
h=1

∂jkg(ĉn,N,M (th)) ∂lmg(ĉn,N,M (th)) ĉn,N,Mjm (th) ĉn,N,Mkl (th)

×Nδ(n)

bth/δ(n)c∑
v=1

[
dn,Njk (th, ϑv) d

n,N
lm (ϑv, th) + dn,Njk (ϑv, th) dn,Nlm (th, ϑv)

]
,

and th = hT/B with B satisfying (3.12), ϑv = vδ(n), δ(n) = minj minh ∆j
h.

According to (2.3), corollary 2, and the choices of th and ϑv, it immediately follows that under the
conditions of theorem 3,

V̂ (g)nT
P−→ V (g)T ,

hence we have the following corollary.

Corollary 5. Under the conditions of theorem 3, on the event
{
V̂ (g)nT is positive semidefinite

}
,

N1/2
(
V̂ (g)nT

)−1/2[
Ŝ(g)nT − S(g)T

] L−→ N (0, I).

5.5 Asychronicity biases and wave interference

When different time series are observed synchronous, or the objects are univariate volatility functionals,
by theorem 1 and corollary 4, the functional estimators are not only rate-optimal but also efficient by
taking N = bn/2c −M + 1.

However, in the presence of asynchronous observations, the condition N = o(n4/5) in theorem
2, 3 means the convergence rate is strictly less than n2/5. If we allow the limit distribution to be
non-centered, we can improve the convergence rate to be exact n2/5. To formulate this non-centered
asymptotic result, we define “cubic variation of time” as Pnjk(t) := n2

∫ t
0

[
θnj (u)− θnk (u)

]2
du, note

Pnjk(t) = n2
∑

Ijh∩Ikv 6=∅

[(
τ jh ∧ τkv − τ

j
h−1 ∨ τkv−1

)2 |τ jh−1 − τkv−1|1{τ jh−1∧τ
k
v−1≤t; I

j
h 6⊆Ikv and Ikv 6⊆I

j
h}

+
(
τ jh ∨ τkv − τ

j
h−1 ∨ τkv−1

)2 |τ jh−1 − τkv−1|1{τ jh−1∧τ
k
v−1≤t; I

j
h⊆Ikv or Ikv⊆I

j
h}

+
(
τ jh ∧ τkv − τ

j
h−1 ∨ τkv−1

)
|τ jh − τkv |2 1{τ jh−1∨τ

k
v−1≤t}

]
,

and under assumption ST, Pnjk(t) = 0 uniformly.

Assumption Θ (cubic variation of time). ∀j, k = 1, · · · , d, ∃ an integrable function %jk, such that
∀t ∈ [0, T ], as n→∞

Pnjk(t)
P−→
∫ t

0
%jk(u) du.
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The next proposition states a limit result with exact rate n2/5, and the cubic variation of time
emerges as the bias in the asymptotic distribution.

Proposition 3. Assume (2.1), (2.3), assumption T, F, Θ, U, and assumption V-α with α > 1/2,
c(0) = c(T ). Choose the tunning parameters according to (3.9), (3.12) with N = bκn4/5c ∧ (bn/2c −
M + 1), we have

n2/5
[
Ŝ(g)nT − S(g)T

] L−s−→MN (µ(g)T , V (g)T
)
,

where V (g)T is defined as (5.6) and

µ(g)T = −2π2κ5/2

3T 2

d∑
j,k=1

∫ T

0
∂jkg

(
c(t)
)
cjk(t) %jk(t) dt,

with %jk being defined in assumption Θ.

The bias in the second order can be estimated by

µ̂(g)T = −2π2κ5/2

3T 2

d∑
j,k=1

B∑
h=1

∂jkg
(
ĉn,N,M (th)

)
ĉn,N,Mjk (th)

[
Pnjk(th)− Pnjk(th−1)

]
.

In the asynchronous scenario, if N = bn/2c −M + 1, the functional estimator (3.11) generally is
no longer consistent. However, there is still an asymptotic result with optimal convergence rate and
a new limit. Before state this result, we need an additional assumption on the almost everywhere
convergence of the Dirichlet kernel of time gaps.

Assumption D (Dirichlet kernels of time). ∀j, k = 1, · · · , d, ∃ an integrable function rjk, such that
∀t ∈ [0, T ], as n→∞ ∫ t

0
d
n,bn/2c
jk

(
u, θnj (u)

)
du

P−→
∫ t

0
rjk(u) du.

Define

cn,N (t) :=
[
dn,Njk (t, t) cjk(t)

]
jk

S(g)n,NT :=

∫ T

0
g
(
cn,N (t)

)
dt,

when N = bn/2c −M + 1, under other conditions, Ŝ(g)nT − S(g)n,NT converges rate-optimally to a
mixed normal distribution.

Proposition 4. Assume (2.1), (2.3), assumption T, F, D, U, V-α with α > 1/2, c(0) = c(T ), and
choose the tunning parameters according to (3.9), (3.12) with N = bn/2c −M + 1, we have

n1/2
[
Ŝ(g)nT − S(g)n,NT

] L−s−→MN (0, V (g)T
)
,

where

V (g)T = 2
d∑

j,k,l,m=1

∫ T

0
∂jkg

(
r ◦ c(t)

)
∂lmg

(
r ◦ c(t)

)
×

{[
θ̃jk,lm(t) + θ̀jk,lm(t)

]
cjl(t) ckm(t) +

[
θ́jk,lm(t) + θ̌jk,lm(t)

]
cjm(t) ckl(t)

}
dt,

r(t) = [rjk(t)]jk, and r ◦ c is the Hadamard product.
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Remark 11. The biases in proposition 3 and proposition 4 arise from asynchronicity. Note F̂ (dXj)
n
s

defined in (3.4) can be regarded as a wave function, the multiplication term F̂ (dXj)
n
q−s× F̂ (dXk)

n
s in

the spectrum estimator (3.5) can be interpreted as a “superposition” of two waves. When the obser-
vation times of the j-th and k-th components are asynchronous, the waves F̂ (dXj)

n
q−s and F̂ (dXk)

n
s

are out of phase. This results in the scaled and shifted Dirichlet kernel dn,Njk (t, t) and is the source of
asynchronicity biases.

In view of (5.2),

dn,Njk (t, t) =


sin
(

(2N+1)π[θnj (t)−θnk (t)]/T
)

(2N+1) sin
(
π[θnj (t)−θnk (t)]/T

) if θnj (t)− θnk (t) 6= 0,

1 if θnj (t)− θnk (t) = 0,

so we have the following:

• dn,Njj (t, t) = 1, ∀j = 1, · · · , d;

• if the j-th and k-th components are observed synchronously, dn,Njk (t, t) = 1;

• if the j-th and k-th components are observed asynchronously but N is chosen in a way such that

N∆(n)→ 0, dn,Njk (t, t)
P→ 1.

In all the scenarios above, we have rjk(t) = 1 uniformly over time and j, k = 1, · · · d. When the

observations are synchronous, i.e., assumption ST holds, we also have S(g)n,NT = S(g)T . When the
observations are asynchronous, however, there is not any workable approach so far to conduct bias
correction for general temporal spacings.

6 Monte Carlo

We adopt the following simulation model:
dX(t) = .03 dt+

√
c(t) dW (t)

c(t) = c̃(t)− [c̃(T )− c̃(0)] t/T

dc̃(t) = 6(.16− c̃(t)) dt+ .5
√
c̃(t) dB(t),

where E[(Wt+∆ −Wt)(Bt+∆ − Bt)] = −.6∆. Each simulation employs 23400 × 21 data points with
∆(n) = 1s.

In the first simulation experiment, we simulate synchronous observations and compute estimators
for functionals g(c) = c2, g(c) = c−1, g(c) = log(c) based on the realized variance and the Fourier
methods. For all these three functionals, the tunning parameters are N = bn.75c, M = bn.3c, and
kn = b∆−.45

n c (cf. (3.6) in Jacod and Rosenbaum (2013)). The empirical densities of studentized
estimators are shown in figure 3.

7 Concluding Remark

Using observations that are of high-frequency and asynchronous, this paper studies the inference
problem of volatility functionals based on spot volatility plug-ins. The nonparametric method to
estimate spot volatility is based on harmonic analysis. One one hand, the Fourier transform method is
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Figure 3: Volatility functional estimators based on Realized Variances & the Fourier method
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numerically more stable for spot volatility estimation than the finite differences of realized variances.
On the other hand, more significantly, the frequency-domain operations circumvents the need for time
alignment or data imputation.

We first show the consistency of the volatility spectrum estimator through the lens of drift effect,
asynchronicity effect and statistical error due to finite Bohr convolution; we then showed the mean-
square rate and consistency of the spot volatility estimator based on the result of volatility spectrum
estimation and a delta sequence. To establish an inferential theory, we provide the asymptotic dis-
tributional results for functionals of one element in the volatility matrix and the functionals of whole
volatility matrix. Interestingly, the results reveal how the asynchronicity as a form of noise impacts
the convergence rate and the asymptotic variance of the volatility functional estimators.

This paper offers an elegant framework to cope with asynchronous observations and missing data
of multiple time series. For the applications of volatility functionals, such as principal component
analysis, specification tests, linear regression, now we have a methodological framework with solid
statistical guarantees to utilize the more prevailing high-frequency datasets that were asynchronously
observed.
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A Trigonometric polynomials

Now we formally introduce some properties of trigonometric polynomials useful in Fourier analysis.
Based on Dirichlet kernels (5.1), we define Fejér kernel of order M as

FM (x) =
1

M

M−1∑
q=0

Dq(x). (A.1)

Note for x /∈ N,

MFM (x) =
M−1∑
q=0

sin[π(2q + 1)x]

sin(πx)
=

1

sin(πx)
Im
(M−1∑
q=0

ei2π(q+1/2)x
)

=
1

sin(πx)
Im
( ei2πMx − 1

eiπx − e−iπx
)

=
1− cos(2πMx)

2 sin(πx)2
,

hence we have

FM (x) =

{
sin(πMx)2

M sin(πx)2
, x /∈ N

M, x ∈ N,

and by (5.2)

F 2M+1(x) =
1

2M + 1
DM (x)2. (A.2)

According to (5.1) and (A.1), ∀M ∈ N+, and an interval I with |I| = T ,∫
I
FM (x/T ) dx =

1

M

M−1∑
q=0

∫
I

∑
|s|≤q

ei2πsx/T dx =
1

M

M−1∑
q=0

∫
I

dx = T. (A.3)

Furthermore, we have the following result,

1

M

∫ T

0
FM

( t
T

)2
dt→ 2T

3
, (A.4)

cf. remark 5.2 in Cuchiero and Teichmann (2015).
What are so interesting about Dirichlet kernels and Fejér kernel in Fourier analysis? Given a

function f on [0, T ], define its truncated Fourier inversion as f q(x) = T−1
∑
|s|≤q F (f)s e

i2πsx/T . One

can express f q as the convolution between f and the Dirichlet kernel of order q,

f q(x) =
1

T

∫ T

0
f(u)

∑
|s|≤q

ei2πs(x−u)/T du =
1

T

∫ T

0
f(u)Dq[(x− u)/T ] du.

Recall f̂ defined in (3.2), we have, by (A.1),

f̂M (t) =
1

TM

M−1∑
q=0

∑
|s|≤q

F (f)s e
i2πst/T =

1

M

M−1∑
q=0

f q(t) =
1

T

∫ T

0
f(u)FM [(t− u)/T ] du. (A.5)
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Lemma 1. If the function f is continuous, then

sup
t∈[0,T ]

∣∣∣∣ 1

T

∫ T

0
FM

( t− u
T

)
f(u) du− f(t)

∣∣∣∣ ≤ Kωf (1/M), if f(0) = f(T );

sup
t∈[1/M,T−1/M ]

∣∣∣∣ 1

T

∫ T

0
FM

( t− u
T

)
f(u) du− f(t)

∣∣∣∣ ≤ Kωf (1/M), if f(0) 6= f(T ).

Proof. By (A.3),

δM (t) := T

∣∣∣∣ 1

T

∫ T

0
FM

( t− u
T

)
f(u) du− f(t)

∣∣∣∣ =

∣∣∣∣∫ T

0
FM

( t− u
T

)[
f(t)− f(u)

]
du

∣∣∣∣ .
(1) If f(0) = f(T ), by periodization, we can extend the definition of f to the real line and retain

its modulus of continuity. By a change of variable and the periodicity of FM and f ,

δM (t) =

∣∣∣∣∫ t

t−T
FM (u/T )

[
f(t)− f(t− u)

]
du

∣∣∣∣ ≤ ∫ T/2

−T/2
FM (u/T ) · |f(t)− f(t− u)| du

=
(∫ 1/M

−1/M
+

∫
1/M≤|u|≤T/2

)
FM (u/T ) · |f(t)− f(t− u)|du.

since FM (x) ≤ M
1+M2x2

, x ∈ [−1/2, 1/2],∫
1/M≤|u|≤T/2

FM (u/T ) · |f(t)− f(t− u)|du ≤ K

M

∫
1/M≤|u|≤T/2

|u|α−2 du ≤ K
[
ωf (M−1) +M−1

]
.

moreover,∫ 1/M

−1/M
FM (u/T ) · |f(t)− f(t− u)|du ≤ Kωf (M−1)

∫ 1/M

−1/M
FM (u/T ) du ≤ Kωf (M−1),

then this lemma in the case f(0) = f(T ) is proved.
(2) If f(0) 6= f(T ), then for t ∈ [1/M, T − 1/M ],

δM (t) ≤
(∫ t−1/M

0
+

∫ t+1/M

t−1/M
+

∫ T

t+1/M

)
FM

( t− u
T

)
· |f(t)− f(u)| du,

then by a similar argument, the lemma in the case f(0) 6= f(T ) can also be proved.

The following lemma is similar to Lemma 5.1 in Cuchiero and Teichmann (2015). The proof
emulates that of Cuchiero and Teichmann (2015), but we generalize the result to irregular observations,
replace the time period 2π with T , and change the conclusion for our own need.

Lemma 2. If M = o(n), for θnj (t) defined in (5.3), ∀f ∈ C([0, T ]), ∀t ∈ [0, T ],∣∣∣∣∫ T

0
FM

( t− θnj (u)

T

)
f(u) du−

∫ T

0
FM

( t− u
T

)
f(u) du

∣∣∣∣ ≤ KTMn .
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Proof. Denote the L.H.S. by D(t)n,Mj,T , note

D(t)n,Mj,T ≤ K
∫ T

0

∣∣∣FM( t− θnj (u)

T

)
− FM

( t− u
T

)∣∣∣ du
= K

nj∑
h=1

∫
Ijh

∣∣∣FM( t− τ jh
T

)
− FM

( t− u
T

)∣∣∣du = K

nj∑
h=1

∆j
h

∣∣∣FM( t− τ jh
T

)
− FM

( t− ujh
T

)∣∣∣,
where ujh ∈ I

j
h for each h by mean value theorem.

Let Jb =
((
t+ bT

M

)
∨ 0,

(
t+ (b+1)T

M

)
∧ T

]
, B0 = inf

{
b, t+ (b+1)T

M > 0
}

, B1 = sup
{
b, t+ bT

M < T
}

,

then

D(t)n,Mj,T ≤ K
B1∑
b=B0

∑
τ jh∈Jb

∆j
h

∣∣∣FM( t− τ jh
T

)
− FM

( t− ujh
T

)∣∣∣.
Based on mean value theorem, ∃vjh ∈ [ujh, τ

j
h] for each h such that FM

(
t−τ jh
T

)
− FM

(
t−ujh
T

)
= (τ jh −

vjh) ∂FM
(
t−vjh
T

)
, so

∑
τ jh∈Jb

∆j
h

∣∣∣FM( t− τ jh
T

)
− FM

( t− ujh
T

)∣∣∣ ≤ ∆(n)2
∑
τ jh∈Jb

∣∣∣∂FM( t− vjh
T

)∣∣∣
≤ Kn∆(n)2

M
sup
v∈Jb

∣∣∣∂FM( t− v
T

)∣∣∣.
Based on (A.2),

sup
v∈Jb

∣∣∣∂FM( t− v
T

)∣∣∣ ≤ KM sup
v∈Jb

FM
( t− v

T

)
≤ K̃M2

∫
Jb

FM
( t− u

T

)
du,

thus we have

D(t)n,Mj,T ≤ KMn∆(n)2
B1∑
b=B0

∫
Jb

FM
( t− u

T

)
du � KTM

n
,

from which this lemma follows.

The following lemma is a modified adaptation of Lemma 3 in Clément and Gloter (2011). We
generalize it to time period T and a more general N . Its purpose is to investigate the Lp norm of the
shifted and scaled Dirichlet kernel.

Lemma 3. Assume assumption T, we have for p > 1, N ≤ b(nj ∧ nk)/2c, ∃Kp <∞,

sup
j,k

sup
t∈[0,T ]

∫ T

0

∣∣dn,Njk (t, u)
∣∣p du ≤ KpN

−1

Proof. By the definition (5.4) and the shape of the Dirichlet kernel, it suffices to study

sup
j

sup
a∈[0,T ]

∫ (a+T/2)∧T

(a−T/2)∨0

∣∣∣ 1

2N + 1
DN

(θnj (t)− a
T

)∣∣∣p dt ≤ KpN
−1.
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Note that ∣∣∣ 1

2N + 1
DN (x/T )

∣∣∣ ≤ 1 ∧ 2T

(2N + 1)|x| ,

and ∀a ∈ [0, T ], ∀j = 1 · · · , d, |t− a| > |θnj (t)− a| − |θnj (t)− t|, thus∫ (a+T/2)∧T

(a−T/2)∨0

∣∣∣ 1

2N + 1
DN

(θnj (t)− a
T

)∣∣∣p dt

≤
(∫ [a− 2T

2N+1
−∆(n)

]
∨0

(a−T/2)∨0
+

∫ (a+T/2)∧T[
a+ 2T

2N+1
+∆(n)

]
∧T

)∣∣∣ 1

2N + 1
DN

(θnj (t)− a
T

)∣∣∣p dt+
4T

2N + 1
+ 2∆(n)

≤
(∫ [a− 2T

2N+1
−∆(n)

]
∨0

(a−T/2)∨0
+

∫ (a+T/2)∧T[
a+ 2T

2N+1
+∆(n)

]
∧T

)∣∣∣ 2T

(2N + 1)(t− a)

∣∣∣p dt+
4T

2N + 1
+ 2∆(n),

via a change of variable,(∫ [a− 2T
2N+1

−∆(n)
]
∨0

(a−T/2)∨0
+

∫ (a+T/2)∧T[
a+ 2T

2N+1
+∆(n)

]
∧T

)∣∣∣ 2T

(2N + 1)(t− a)

∣∣∣p dt ≤ 4T

2N + 1

∫ ∞
1

x−p dx,

thereby this lemma is proved.

For j, k, l,m = 1 · · · , d, by Fubini’s theorem and Hölder’s inequality,

N2

∫ T

0

∫ T

0
dtdu

[ ∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

∫ v

0
dn,Nlm (v, ϑ)2 dϑ

]
≤ N2

∫ T

0
dv
[ ∫ T

v
dn,Njk (t, v) dt

∫ T

v
dn,Njk (u, v) du

∫ v

0
dn,Nlm (v, ϑ)2 dϑ

]
≤ N2

∫ T

0
dv
(∫ T

v

∣∣dn,Njk (t, v)
∣∣dt)2(∫ v

0

∣∣dn,Nlm (v, ϑ)
∣∣2 dϑ

)
≤ T

3p−2
p N

(∫ T

0

∣∣dn,Njk (t, v)
∣∣p dt

)2/p(
N

∫ T

0

∣∣dn,Nlm (v, ϑ)
∣∣2 dϑ

)
.

according to lemma 3, we have for p > 1,

sup
j,k,l,m

N2

∫ T

0

∫ T

0
dtdu

[ ∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

∫ v

0
dn,Nlm (v, ϑ)2 dϑ

]
≤ T

3p−2
p N1−2/p (A.6)

The following lemma follows from assumption F and is a straightforward generalization of Lemma
4 in Clément and Gloter (2011) from the bivariate setting to the multivariate setting.

Lemma 4. Under assumption T, F, then ∀f0, f1 ∈ C([0, T ]), we have ∀t ∈ [0, T ],∫ t

0
f0(u) duN

∫ u

0
dn,Njk (u, v) dn,Nlm (u, v) f1(v) dv

P−→
∫ t

0
θ̃jk,lm(u) f0(u)f1(u) du∫ t

0
f0(u) duN

∫ u

0
dn,Njk (u, v) dn,Nlm (v, u) f1(v) dv

P−→
∫ t

0
θ́jk,lm(u) f0(u)f1(u) du∫ t

0
f0(u) duN

∫ u

0
dn,Njk (v, u) dn,Nlm (u, v) f1(v) dv

P−→
∫ t

0
θ̌jk,lm(u) f0(u)f1(u) du∫ t

0
f0(u) duN

∫ u

0
dn,Njk (v, u) dn,Nlm (v, u) f1(v) dv

P−→
∫ t

0
θ̀jk,lm(u) f0(u)f1(u) du.
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The following lemma reveals the limiting behavior of the shifted and scaled Dirichlet kernels when
the temporal spacings are synchronous (but possibly irregular) across different dimensions.

Lemma 5. Assume n1 = n2 = · · · = nd and minj τ
j
h = maxj τ

j
h for h = 1, · · · , n1, then ∀t ∈ [0, T ]

and ∀f0, f1 ∈ C([0, T ]),∫ T

0
f0(u) duN

∫ u

0
dn,Njk (u, v) dn,Nlm (u, v) f1(v) dv

P−→ T

4

∫ T

0
f0(u)f1(u) du∫ T

0
f0(u) duN

∫ u

0
dn,Njk (u, v) dn,Nlm (v, u) f1(v) dv

P−→ T

4

∫ T

0
f0(u)f1(u) du∫ T

0
f0(u) duN

∫ u

0
dn,Njk (v, u) dn,Nlm (u, v) f1(v) dv

P−→ T

4

∫ T

0
f0(u)f1(u) du∫ T

0
f0(u) duN

∫ u

0
dn,Njk (v, u) dn,Nlm (v, u) f1(v) dv

P−→ T

4

∫ T

0
f0(u)f1(u) du.

Proof. Because of synchronous observations, dn,Njk (u, v) dn,Nlm (u, v) = dn,N11 (u, v)2, then by (5.4) and
(A.2),∫ T

0
f0(u) duN

∫ u

0
dn,N11 (u, v)2 f1(v) dv =

N

2N + 1

∫ T

0
f0(u) du

∫ u

0
F 2N+1

(θnj (u)− θnk (v)

T

)
f1(v) dv,

by Riemann summation,∫ u

0
F 2N+1

(θnj (u)− θnk (v)

T

)
f1(v) dv =

∫ u

0
F 2N+1

(u− v
T

)
f1(v) dv +Op(n

−1),

via changes of variables,∫ T

0
f0(u) du

∫ u

0
F 2N+1

(u− v
T

)
f1(v) dv = T 2

∫ 1

0
f0(Tu) du

∫ u

0
F 2N+1(u− v)f1(Tv) dv,

note that F 2N+1 is a delta sequence, as N → ∞,
∫ u

0 F
2N+1(u − v)f1(Tv) dv → f1(Tu)/2, then this

lemma follows from a change of variable.

B Proof of proposition 1

In all the proofs of this paper, K represents a positive finite real number, and may vary from line to
line.

By assumption U and a localization argument (cf. section 4.4.1 in Jacod and Protter (2012)),
without loss of generality we can assume a stronger assumption in all the following proofs:

Assumption SU (global boundedness). The spot volatility matrix c has continuous sample path al-
most surely. Moreover, there exists a finite constant K and a compact subset S of positive semidefinite
matrices such that

‖b(t)‖+ ‖c(t)‖ ≤ K, c(t) ∈ S, ∀t ∈ [0, T ].
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Study of R(1)n,N

We have

F̂ (dMj)
n
q − F (dMj)q =

∫ T

0
βnj,q(t) dMj(t)

where

βnj,q(t) =

nj∑
h=1

e−i2πqτ
j
h/T
[
1− e−i2πq(t−τ jh)/T

]
1
Ijh

(t). (B.1)

note |βnj,q(t)| ≤ KT−1q∆(n), by Burkholder-Davis-Gundy inequality,

E
(
|F̂ (dMj)

n
q−s|4

)
≤ KT 2

E
(
|F (dMj)q|4

)
≤ KT 2

E
(
|F̂ (dMj)

n
q − F (dMj)q|4

)
≤ KT−2q4∆(n)4

by Cauchy-Schwarz inequality,

E
(
|F̂ (dMj)

n
q−sF̂ (dMk)

n
s − F (dMj)q−sF (dMk)s|2

)
≤ 2
[
E
(
|F̂ (dMj)

n
q−s|4

)1/2 · E(|F̂ (dMk)
n
s − F (dMk)s|4

)1/2
+ E

(
|F (dMk)s|4

)1/2 · E(|F̂ (dMj)
n
q−s − F (dMj)

n
q−s|4

)1/2]
so by Jensen’s inequality,

E
(∣∣R(1)n,Njk,q

∣∣) ≤ KN∆(n) (B.2)

Study of R(2)N

Define a C-valued martingale Γjq(t) =
∫ t

0 e
−i2πqu/T dMj(u) for j = 1, · · · , d. We see that Γjq(T ) =

F (dMj)q. By Itô’s formula,

Γjq−s(T ) · Γks(T ) = F (cjk)q +

∫ T

0
Γjq−s(t) dΓks(t) +

∫ T

0
Γks(t) dΓjq−s(t)

hence

R(2)Njk,q = Λ(1)Njk,q + Λ(2)Njk,q

where
Λ(1)Njk,q = 1

2N+1

∑
|s|≤N

∫ T
0 Γjq−s(t) dΓks(t)

Λ(2)Njk,q = 1
2N+1

∑
|s|≤N

∫ T
0 Γks(t) dΓjq−s(t)

By (5.1), we have

Λ(1)Njk,q =

∫ T

0
σk·(t) dW (t)

∫ t

0
e−i2πqu/T

1

2N + 1
DN

(u− t
T

)
σj·(t) dW (u)

Λ(2)Njk,q =

∫ T

0
e−i2πqt/Tσj·(t) dW (t)

∫ t

0

1

2N + 1
DN

(u− t
T

)
σk·(t) dW (u)
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by Itô isometry3, (A.2) and (A.3),

E
(
|Λ(1)Njk,q|2

)
= E

[∫ T

0

(∫ t

0
e−i2πqu/T

1

2N + 1
DN

(u− t
T

)
dXj(u)

)2
ckk(t) dt

]
≤ K

2N + 1

∫ T

0

∫ t

0
F 2N+1

(u− t
T

)
dudt � KT 2

N

the term Λ(2)Njk,q can be bounded by a similar argument, so

E
(∣∣R(2)Njk,q

∣∣) ≤ KTN−1/2 (B.3)

Study of R(0)n,N

For a generic scalar process, we can write F̂ (dU)nq =
∫ T

0 enj,q(t) dU(t) where j = 1, · · · , d, enj,q(t) =∑nj

h=1 e
−i2πqτ jh/T1

Ijh
(t).

By linearity of discrete Fourier transform, F̂ (dXj)
n
q = F̂ (dAj)nq + F̂ (dMj)

n
q , so

F̂ (dXj)
n
q−sF̂ (dXk)

n
s − F̂ (dMj)

n
q−sF̂ (dMk)

n
s =

F̂ (dAj)
n
q−sF̂ (dAk)

n
s + F̂ (dAj)

n
q−sF̂ (dMk)

n
s + F̂ (dAk)

n
s F̂ (dMj)

n
q−s

By Parseval’s identity,
∞∑

s=−∞
|F (dAj)s|2 =

∫ T

0
|bj(t)|2 dt <∞

note

F̂ (dAj)
n
q − F (dAj)q =

∫ T

0
βnj,q(t) bj(t) dt

where βnj,q(t) is defined in (B.1). By Cauchy-Schwarz inequality,

∣∣R(0)n,Njk,q
∣∣ ≤ K

2N + 1

∫ T

0
‖b(t)‖2 dt+

( K

2N + 1

∫ T

0
‖b(t)‖2 dt

)1/2
×[( 1

2N + 1

∑
|s|≤N

|F (dMk)s|2
)1/2

+
( 1

2N + 1

∑
|s|≤N

|F (dMj)q−s|2
)1/2

]

From the study of the term R(2)Njk,q, we know

∑
|s|≤N

F (dMk)
2
s =

∫ T

0
DN

(2t

T

)
ckk(t) dt+ 2

∫ T

0
σk,·(t) dW (t)

∫ t

0
DN

( t+ u

T

)
σk,·(u) dW (u)

by Cauchy-Schwarz inequality, (A.2), (A.3)

1

2N + 1

∫ T

0
DN

(2t

T

)
ckk(t) dt ≤ 1√

2N + 1

(∫ T

0
F 2N+1

(2t

T

)
dt
)1/2(∫ T

0
ckk(t)

2 dt
)1/2

≤ KTN−1/2

3a.k.a. Itô energy identity.
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by Jensen’s inequality, Burkholder-Gundy inequality, (A.2), (A.3),

E
[ 1

2N + 1

∫ T

0
σk·(t) dW (t)

∫ t

0
DN

( t+ u

T

)
σk·(u) dW (u)

]
≤ 1

2N + 1
E
[( ∫ T

0
σk·(t) dW (t)

∫ t

0
DN

( t+ u

T

)
σk·(u) dW (u)

)2]1/2

≤ K√
2N + 1

[ ∫ T

0

∫ t

0
F 2N+1

( t+ u

T

)
dudt

]1/2
≤ KTN−1/2

hence 1
2N+1

∑
|s|≤N |F (dMk)s|2 ≤ KTN−1/2.

Similarly, 1
2N+1

∑
|s|≤N |F (dMk)q−s|2 ≤ KTN−1/2. Thus

E
(∣∣R(0)n,Njk,q

∣∣) ≤ KTN−3/4. (B.4)

C Some martingale structures

Now let’s prepare some Itô martingales that are indispensably useful in the incoming asymptotic
analysis.

For j, k = 1, · · · , d, define the following Itô martingales:

Un,Njk (t) =

∫ t

0
dn,Njk (t, u)σk·(u) dW (u)

Ũn,N,Mjk (t) =

∫ t

0
dn,Njk (u, t) ρ̂Mjk(θnj (u))σj·(u) dW (u) (C.1)

Ûn,N,Mjk,T (t, u) =

∫ u

0
FM

( t− θnj (v)

T

)
dn,Njk (v, u)σj·(v) dW (v),

and for j, k, l,m = 1, · · · , d,

Zn,Njk,lm(t) =

∫ t

0
dn,Njk (t, u)σk·(u)Un,Nlm (u) dW (u)

Z̆n,Njk,lm(t) =

∫ t

0
dn,Njk (t, u)σk·(u) Ũn,N,Mlm (u) dW (u)

Z̊n,Njk,lm(t) =

∫ t

0
dn,Nlm (u, t) ρ̂Mlm(θnl (u))σl·(u)Un,Njk (u) dW (u)

Z̃n,Njk,lm(t) =

∫ t

0
dn,Njk (u, t) ρ̂Mjk(θnj (u))σj·(u) Ũn,N,Mlm (u) dW (u). (C.2)
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Based the definition (C.1), by Itô’s formula,

Un,Njk (t)Un,Nlm (t) =

∫ t

0
dn,Njk (t, u) dn,Nlm (t, u) ckm(u) du+ Zn,Njk,lm(t) + Zn,Nlm,jk(t)

Un,Njk (t) Ũn,N,Mlm (t) =

∫ t

0
dn,Njk (t, u) dn,Nlm (u, t) ρ̂Mlm(θnl (u)) ckl(u) du+ Z̆n,Njk,lm(t) + Z̊n,Njk,lm(t)

Ũn,N,Mjk (t)Un,Nlm (t) =

∫ t

0
dn,Njk (u, t) dn,Nlm (t, u) ρ̂Mjk(θnj (u)) cjm(u) du+ Z̆n,Nlm,jk(t) + Z̊n,Nlm,jk(t)

Ũn,N,Mjk (t) Ũn,N,Mlm (t) =

∫ t

0
dn,Njk (u, t) dn,Nlm (u, t) ρ̂Mjk(θnj (u)) ρ̂Mlm(θnl (u)) cjl(u) du

+Z̃n,Njk,lm(t) + Z̃n,Nlm,jk(t). (C.3)

We have the following lemma about the magnitudes of quadratics.

Lemma 6. Assume assumption SU and (2.3), there exist some finite positive constant K such that

E
[
Un,Njk (t)Un,Njk (u)

]
≤ K

∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

E
[
Un,Njk (t)Ũn,N,Mjk (u)

]
≤ K

∫ t∧u

0
dn,Njk (t, v) dn,Njk (v, u) dv

E
[
Ũn,N,Mjk (t)Ũn,N,Mjk (u)

]
≤ K

∫ t∧u

0
dn,Njk (v, t) dn,Njk (v, u) dv (C.4)

E
[
Ûn,N,Mjk,T (t, u)2

]
≤ K

∫ u

0
FM

( t− θnj (v)

T

)2
dn,Njk (v, u)2 dv,

and

E
[
Zn,Njk,lm(t)Zn,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

∫ v

0
dn,Nlm (v, ϑ)2 dϑ

E
[
Z̆n,Njk,lm(t)Z̆n,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

∫ v

0
dn,Nlm (ϑ, v)2 dϑ

E
[
Z̊n,Njk,lm(t)Z̊n,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Nlm (v, t) dn,Nlm (v, u) dv

∫ v

0
dn,Njk (v, ϑ)2 dϑ

E
[
Z̃n,Njk,lm(t)Z̃n,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Njk (v, t) dn,Njk (v, u) dv

∫ v

0
dn,Nlm (ϑ, v)2 dϑ.

Proof. By (C.1), Itô’s formula and Fubini’s theorem,

E
[
Un,Njk (t)Un,Njk (u)

]
=

∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v)E[cjk(v)] dv

E
[
Un,Njk (t) Ũn,N,Mjk (u)

]
=

∫ t∧u

0
dn,Njk (t, v) dn,Njk (v, u)E

[
ρ̂Mjk(θnj (v)) cjk(v)

]
dv

E
[
Ũn,N,Mjk (t) Ũn,N,Mjk (u)

]
=

∫ t∧u

0
dn,Njk (v, t) dn,Njk (v, u)E

[
ρ̂Mjk(θnj (v))2 cjk(v)

]
dv

E
[
Ûn,N,Mjk,T (t, u)2

]
=

∫ u

0
FM

( t− θnj (v)

T

)2
dn,Njk (v, u)2 E[cjj(v)] dv,
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thereby the first claim follows from assumption SU and (2.3).
According to Itô’s formula, (C.2), (C.3),

E
[
Zn,Njk,lm(t)Zn,Njk,lm(u)

]
= E

∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) ckk(v)Un,Nlm (v)2 dv

≤ K
∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v)E

[
Un,Nlm (v)2

]
dv,

similarly,

E
[
Z̆n,Njk,lm(t)Z̆n,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v)E

[
Ũn,Nlm (v)2

]
dv

E
[
Z̊n,Njk,lm(t)Z̊n,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Nlm (v, t) dn,Nlm (v, u)E

[
Un,Njk (v)2

]
dv

E
[
Z̃n,Njk,lm(t)Z̃n,Njk,lm(u)

]
≤ K

∫ t∧u

0
dn,Njk (v, t) dn,Njk (v, u)E

[
Ũn,Nlm (v)2

]
dv,

then the second claim follows from assumption U and the first claim proved earlier.

D Proof of proposition 2

Recall the definitions (3.4) and (3.5) based on (5.3) and (5.4), we have the expression:

F̂ (dXj)
n
q−s × F̂ (dXk)

n
s =

∫ T

0
e−i2π(q−s)θnj (t)/T dXj(t)

∫ T

0
e−i2πsθ

n
k (u)/T dXk(u),

by (4.3) and Itô’s formula,

F̂ (dXj)
n
q−s × F̂ (dXk)

n
s = φnq,s,jk + ξ(0)nq,s,jk + ξ(1)nq,s,jk, (D.1)

where

φnq,s,jk =

∫ T

0
e−i2πqθ

n
j (t)/T ei2πs[θ

n
j (t)−θnk (t)]/T cjk(t) dt

ξ(0)nq,s,jk =

∫ T

0
e−i2πqθ

n
j (t)/T dXj(t)

∫ t

0
ei2πs[θ

n
j (t)−θnk (u)]/T dXk(u)

ξ(1)nq,s,jk =

∫ T

0
dXk(t)

∫ t

0
e−i2πqθ

n
j (u)/T ei2πs[θ

n
j (u)−θnk (t)]/T dXj(u),

then by (3.5), (5.1), (5.4),
F̂ (cjk)

n,N
q = Φn,N

q,jk + Ξ(0)n,Nq,jk + Ξ(1)n,Nq,jk, (D.2)

where

Φn,N
q,jk =

∫ T

0
e−i2πqθ

n
j (t)/Tdn,Njk (t, t) cjk(t) dt

Ξ(0)n,Nq,jk =

∫ T

0
e−i2πqθ

n
j (t)/T dXj(t)

∫ t

0
dn,Njk (t, u) dXk(u)

Ξ(1)n,Nq,jk =

∫ T

0
dXk(t)

∫ t

0
e−i2πqθ

n
j (u)/T dn,Njk (u, t) dXj(u).
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Thus, by (3.5) and (C.1) we write

ĉn,N,Mjk (t) =
1

T

∫ T

0
FM

( t− θnj (u)

T

)
dn,Njk (u, u) cjk(u) du

+
1

T

∫ T

0
FM

( t− θnj (u)

T

)
Un,Njk (u)σj·(u) dW (u) +

1

T

∫ T

0
Ûn,Njk,T (t, u)σk·(u) dW (u)

therefore
ĉn,N,Mjk (t)− cjk(t) = Q(t, 0)n,N,Mjk,T +Q(t, 1)n,N,Mjk,T + Ω(t)n,N,Mjk,T , (D.3)

where

Q(t, 0)n,N,Mjk,T =
1

T

∫ T

0
FM

( t− θnj (u)

T

)
Un,Njk (u)σj·(u) dW (u)

Q(t, 1)n,N,Mjk,T =
1

T

∫ T

0
Ûn,N,Mjk,T (t, u)σk·(u) dW (u)

Ω(t)n,N,Mjk,T =
1

T

∫ T

0
FM

( t− θnj (u)

T

)
dn,Njk (u, u) cjk(u) du− cjk(t).

By Itô’s formula and Fubini’s theorem,

E
[∣∣Q(t, 0)n,N,Mjk,T

∣∣2] =
1

T 2

∫ T

0
FM

( t− θnj (u)

T

)2
E
[
Un,Njk (u)2 cjj(u)

]
du

E
[∣∣Q(t, 1)n,N,Mjk,T

∣∣2] =
1

T 2

∫ T

0
E
[
Ûn,N,Mjk,T (t, u)2 ckk(u)

]
du,

because of assumption SU and lemma 6,

E
[∣∣Q(t, 0)n,N,Mjk,T

∣∣2] ≤ K ∫ T

0
FM

( t− θnj (u)

T

)2
du

∫ u

0
dn,Njk (u, v)2 dv

≤ K
[

sup
u∈[0,T ]

∫ T

0
dn,Njk (u, v)2 dv

]
·
[ ∫ T

0
FM

( t− θnj (u)

T

)2
du
]
,

and by Fubini’s theorem,

E
[∣∣Q(t, 1)n,N,Mjk,T

∣∣2]
≤ K

∫ T

0
du

∫ u

0
FM

( t− θnj (v)

T

)2
dn,Njk (v, u)2 dv = K

∫ T

0
FM

( t− θnj (v)

T

)2
dv

∫ T

v
dn,Njk (v, u)2 du

≤ K
[

sup
v∈[0,T ]

∫ T

0
dn,Njk (v, u)2 du

]
·
[ ∫ T

0
FM

( t− θnj (u)

T

)2
du
]
,

according to (A.4) and lemma 3,∣∣Q(t, 0)n,N,Mjk,T

∣∣2 +
∣∣Q(t, 1)n,N,Mjk,T

∣∣2 ≤ KM

N
. (D.4)

Notice
Ω(t)n,N,Mjk,T = Ω(t, 0)n,N,Mjk,T + Ω(t, 1)n,Mjk,T + Ω(t, 2)Mjk,T , (D.5)
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where

Ω(t, 0)n,N,Mjk,T =
1

T

∫ T

0
FM

( t− θnj (u)

T

)
cjk(u)

[
dn,Njk (u, u)− 1

]
du

Ω(t, 1)n,Mjk,T =
1

T

∫ T

0
FM

( t− θnj (u)

T

)
cjk(u) du− 1

T

∫ T

0
FM

( t− u
T

)
cjk(u) du

Ω(t, 2)Mjk,T =
1

T

∫ T

0
FM

( t− u
T

)
cjk(u) du− cjk(t).

Based on the Taylor series of sine function, assumption SU, (A.3),

E
(

sup
t∈[0,T ]

∣∣Ω(t, 0)n,N,Mjk,T

∣∣2) ≤ KN4

n4
1{j 6=k};

according to assumption SU and lemma 2, we know

E
(

sup
t∈[0,T ]

∣∣Ω(t, 1)n,Mjk,T
∣∣2) ≤ KM2

n2
;

by lemma 1,

E
(

supt∈[1/M,T−1/M ]

∣∣Ω(t, 2)Mjk,T
∣∣2) ≤ KM−2α, if c(0) 6= c(T )

E
(

supt∈[0,T ]

∣∣Ω(t, 2)Mjk,T
∣∣2) ≤ KM−2α, if c(0) = c(T )

then proposition 2 follows from (D.3), (D.4), (D.5), (3.9).

E Proof of theorem 1, theorem 2

We can write, for j, k = 1, · · · , d

N1/2
[
Ŝ(g)njk,T − S(g)jk,T

]
= S(0)n,N,M,B

jk,T + S(1)n,N,Mjk,T + S(2)n,N,Mjk,T (E.1)

N1/2
[
S̃(g)njj,T − S(g)jj,T

]
= S̃(0)n,N,Mjj,T + S(1)n,N,Mjj,T + S(2)n,N,Mjj,T

where

S(0)n,N,M,B
jk,T := N1/2

[
B∑
h=1

g
(
ĉn,N,Mjk (th)

)
T/B −

∫ tB

t0

g
(
ĉn,N,Mjk (t)

)
dt

]

S̃(0)n,N,Mjj,T := N1/2

[
nj∑
h=1

g
(
ĉn,N,Mjj (τh)

)
∆j
h −

∫ τ jnj

τ j0

g
(
ĉn,N,Mjj (t)

)
dt

]

N1/2

∫ τ0nj

0
g
(
ĉn,N,Mjj (t)

)
dt+N1/2

∫ T

τ jnj

g
(
ĉn,N,Mjj (t)

)
dt

S(1)n,N,Mjk,T := N1/2

∫ T

0

{
g
(
ĉn,N,Mjk (t)

)
− g(cjk(t))− ∂g(cjk(t))

[
ĉn,N,Mjk (t)− cjk(t)

]}
dt

S(2)n,N,Mjk,T := N1/2

∫ T

0
∂g(cjk(t))

[
ĉn,N,Mjk (t)− cjk(t)

]
dt,
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and th = hT/B.
By assumption U and (2.3), we know g

(
ĉn,N,Mjk (t)

)
≤ K, then

N1/2
[ ∫ τ0nj

0
g
(
ĉn,N,Mjj (t)

)
dt+

∫ T

τ jnj

g
(
ĉn,N,Mjj (t)

)
dt
]

= Op(N
1/2/n) = op(1),

by assumption T and (3.9). By Riemann summation and assumption T,∥∥S(0)n,N,M,B
jk,T

∥∥ = Op(N
1/2/B)

N1/2

∥∥∥∥∥
[ nj∑
h=0

g
(
ĉn,N,Mjj (τh)

)
∆j
h −

∫ τ jnj

τ j0

g
(
ĉn,N,Mjj (t)

)
dt

]∥∥∥∥∥ = Op(N
1/2/n),

in view of (3.12), ∥∥∥S(0)n,N,M,B
jk,T

∥∥∥+
∥∥∥S̃(0)n,N,Mjj,T

∥∥∥ P−→ 0.

By (2.3),
∥∥g(ĉn,N,Mjk (t)

)
− g(cjk(t)) − ∂g(cjk(t))

[
ĉn,N,Mjk (t) − cjk(t)

]∥∥ = Op
(
|ĉn,N,Mjk (t) − cjk(t)|2

)
,

hence we have∥∥∥S(1)n,N,Mjk,T

∥∥∥ ≤ KN1/2

∫ T

0

∣∣ĉn,N,Mjk (t)− cjk(t)
∣∣2 dt ≤ KTN1/2 sup

t∈[0,T ]

∣∣ĉn,N,Mjk (t)− cjk(t)
∣∣2,

following from proposition 2, we have E
∥∥S(1)n,N,Mjk,T

∥∥ ≤ KT (M−2α + M/N1/2) under conditions of
theorem 2. Then by (2.3) and Markov’s inequality,∥∥∥S(1)n,N,Mjk,T

∥∥∥ P−→ 0.

It remains to show the stable convergence of S(2)n,N,Mjk,T = N1/2
∫ T

0 ∂g(cjk(t))
[
ĉn,N,Mjk (t)−cjk(t)

]
dt.

Let T = minj τ
j
nj , note T − T ≤ ∆(n), without loss of generality, we can assume T = T , i.e.,

τ j
nj = T , for j = 1, · · · , d.

E.1 decomposition

Let ρjk(t) = ∂g(cjk(t)), by the definition (3.7), we have∫ T

0
ρjk(t)ĉ

n,N,M
jk (t) dt =

1

T

∑
|q|<M

(
1− |q|

M

)
F̂ (cjk)

n,N
q

∫ T

0
ρjk(t)e

−i2πqt/T dt

=
1

T

∑
|q|<M

(
1− |q|

M

)
F (ρjk)q F̂ (cjk)

n,N
q ,

by (3.2) and (D.2),

N1/2

T

∑
|q|<M

(
1− |q|

M

)
F (ρjk)q F̂ (cjk)

n,N
q =

N1/2

T

∑
|q|<M

(
1− |q|

M

)
F (ρjk)q

[
Φn,N
q,jk + Ξ(0)n,Nq,jk + Ξ(1)n,Nq,jk

]
= N1/2

∫ T

0
ρ̂Mjk(θnj (t)) dn,Njk (t, t) cjk(t) dt+ e(0)n,N,Mjk,T + e(1)n,N,Mjk,T ,
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where

e(0)n,N,Mjk,T = N1/2

∫ T

0
ρ̂Mjk(θnj (t))σj·(t) dW (t)

∫ t

0
dn,Njk (t, u)σk·(u) dW (u)

e(1)n,N,Mjk,T = N1/2

∫ T

0
σk·(t) dW (t)

∫ t

0
ρ̂Mjk(θnj (u)) dn,Njk (u, t)σj·(u) dW (u). (E.2)

Therefore, we have the following decomposition:

N1/2

∫ T

0
ρjk(t)

[
ĉn,N,Mjk (t)− cjk(t)

]
dt = o(0)n,Mjk,T + o(1)n,N,Mjk,T + e(0)n,N,Mjk,T + e(1)n,N,Mjk,T , (E.3)

where

o(0)n,Mjk,T = N1/2

∫ T

0

[
ρ̂Mjk(θnj (t))− ρjk(t)

]
cjk(t) dt

o(1)n,N,Mjk,T = N1/2

∫ T

0
ρ̂Mjk(θnj (t)) cjk(t)

[
dn,Njk (t, t)− 1

]
dt. (E.4)

(1) On one hand, by (A.3), (A.5), Fubini’s theorem, and lemma 2,

o(0)n,Mjk,T = N1/2

∫ T

0
cjk(t) dt

1

T

∫ T

0
FM

(u− θnj (t)

T

)[
ρjk(u)−ρjk(t)

]
du =

N1/2

T
JMjk,T +Op

(
N1/2M/n

)
,

where

JMjk,T =

∫ T

0

∫ T

0
FM

(u− t
T

)[
ρjk(u)− ρjk(t)

]
cjk(t) dt du.

By symmetry of variables, JMjk,T =
∫ T

0

∫ T
0 FM [(u− t)/T ]

[
ρjk(t)− ρjk(u)

]
cjk(u) dudt, hence

JMjk,T = −1

2

∫ T

0
du

∫ T

0
FM

(u− t
T

)[
ρjk(u)− ρjk(t)

][
cjk(u)− cjk(t)

]
dt.

By (2.3) the modulus of continuity of ρ is determined by that of c, let LMjk,T (u) :=
∫ T

0 FM [(u −
t)/T ]

[
ρjk(u) − ρjk(t)

][
cjk(u) − cjk(t)

]
dt, by periodicity of c and ρ, LMjk,T (u) =

∫ u+T/2
u−T/2 F

M [(u −
t)/T ]

[
ρjk(u)− ρjk(t)

][
cjk(u)− cjk(t)

]
dt. Note

∣∣LMjk,T (u)
∣∣ ≤ (∫

|u−t|≤1/M
+

∫
|u−t|>1/M

)
FM

(u− t
T

)∣∣ρjk(u)− ρjk(t)
∣∣∣∣cjk(u)− cjk(t)

∣∣dt,
through an argument similar to the proof of lemma 1, we have E

∣∣LMjk,T (u)
∣∣ ≤ K

[
M−2α + M−(1+α)

]
,

thus

E
∣∣o(0)n,Mjk,T

∣∣ ≤ K[( N

M4α

)1/2
+
(N
n

)1/2 M

n1/2

]
,

by (3.9) and Markov’s inequality, we have shown the asymptotic negligibility in probability of o(0)n,Mjk,T ,
i.e.,

o(0)n,Mjk,T
P−→ 0. (E.5)
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(2) On the other hand, according to the definition (5.4) and the Taylor series of the sine function,

dn,Njk (t, t)− 1 = −π
2

6
(2N + 1)2

[
θnj (t)− θnk (t)

]2
+Op(N

4∆(n)4) (E.6)

so
E
∣∣o(1)n,N,Mjk,T

∣∣ ≤ KN5/2∆(n)21{j 6=k},

hence if we let N ≤ bn/2c −M + 1 in case j = k, and let N = o(n4/5) in case j 6= k, it follows

o(1)n,N,Mjk,T
P−→ 0. (E.7)

Thus the asymptotics solely relies on e(0)n,N,Mjk,T + e(1)n,N,Mjk,T .

E.2 stable convergence

By (E.2) and (C.1), we can write

e(0)n,N,Mjk,T = N1/2

∫ T

0
ρ̂Mjk(θnj (t))σj·(t)U

n,N
jk (t) dW (t)

e(1)n,N,Mjk,T = N1/2

∫ T

0
σk·(t) Ũ

n,N,M
jk (t) dW (t). (E.8)

To establish the stable convergence, according to Jacod (1997), Jacod and Protter (1998), we need
to consider the limits in probability of the brackets

〈
e(0)n,N,Mjk + e(1)n,N,Mjk ,Wr

〉
T

and
〈
e(0)n,N,Mjk +

e(1)n,N,Mjk , e(0)n,N,Mjk + e(1)n,N,Mjk

〉
T

.
(1) First, let’s consider, for r = 1 · · · , d′,

〈
e(0)n,N,Mjk ,Wr

〉
T

= N1/2

∫ T

0
ρ̂Mjk(θnj (t))σjr(t)U

n,N
jk (t) dt

〈
e(1)n,N,Mjk ,Wr

〉
T

= N1/2

∫ T

0
σkr(t) Ũ

n,N,M
jk (t) dt.

notice that〈
e(0)n,N,Mjk ,Wr

〉2

T
= N

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mjk(θnj (u))σjr(t)σjr(u)× Un,Njk (t)Un,Njk (u) dtdu,

according to lemma 6, Fubini’s theorem, Hölder’s inequality,

E
[〈
e(0)n,N,Mjk ,Wr

〉2

T

]
≤ KN

∫ T

0

∫ T

0
dt du

(∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

)
≤ KN

∫ T

0
dv
(∫ T

v

∣∣dn,Njk (t, v)
∣∣ dt)(∫ T

v

∣∣dn,Njk (u, v)
∣∣du)

≤ KN
∫ T

0
dv
(∫ T

v

∣∣dn,Njk (t, v)
∣∣ dt)2

≤ KT
3p−2

p N
(∫ T

0

∣∣dn,Njk (t, v)
∣∣p dt

)2/p
,

similarly, 〈
e(1)n,N,Mjk ,Wr

〉2

T
= N

∫ τn

0

∫ τn

0
σkr(t)σkr(u)× Ũn,N,Mjk (t)Ũn,N,Mjk (u) dtdu,

38



by a similar argument applied to E[〈e(0)n,N,Mjk ,Wr〉2T ],

E
[〈
e(1)n,N,Mjk ,Wr

〉2

T

]
≤ KT

3p−2
p N

(∫ T

0

∣∣dn,Njk (v, t)
∣∣p dt

)2/p
.

By Jensen’s inequality and Markov’s inequality, we have the following lemma.

Lemma 7. Under the assumptions of theorem 2, ∀j, k = 1, · · · , d and ∀r = 1, · · · , d′,〈
e(0)n,N,Mjk + e(1)n,N,Mjk ,Wr

〉
T

P−→ 0.

(2) Second, let’s consider

〈
e(0)n,N,Mjk , e(0)n,N,Mjk

〉
T

= N

∫ T

0
ρ̂Mjk(θnj (t))2 cjj(t)U

n,N
jk (t)2 dt

〈
e(0)n,N,Mjk , e(1)n,N,Mjk

〉
T

= N

∫ T

0
ρ̂Mjk(θnj (t)) cjk(t)U

n,N
jk (t) Ũn,N,Mjk (t) dt

〈
e(1)n,N,Mjk , e(1)n,N,Mjk

〉
T

= N

∫ T

0
ckk(t) Ũ

n,N,M
jk (t)2 dt,

in view of (C.3), 〈
e(0)n,N,Mjk , e(0)n,N,Mjk

〉
T

= 2O(0)n,N,Mjk,T + V (0)n,N,Mjk,T〈
e(0)n,N,Mjk , e(1)n,N,Mjk

〉
T

= O(1)n,N,Mjk,T +O(2)n,N,Mjk,T + V (1)n,N,Mjk,T〈
e(1)n,N,Mjk , e(1)n,N,Mjk

〉
T

= 2O(3)n,N,Mjk,T + V (2)n,N,Mjk,T ,

where

O(0)n,N,Mjk,T = N

∫ T

0
ρ̂Mjk(θnj (t))2 cjj(t)Z

n,N
jk (t) dt

O(1)n,N,Mjk,T = N

∫ T

0
ρ̂Mjk(θnj (t)) cjk(t) Z̆

n,N
jk (t) dt

O(2)n,N,Mjk,T = N

∫ T

0
ρ̂Mjk(θnj (t)) cjk(t) Z̊

n,N
jk (t) dt

O(3)n,N,Mjk,T = N

∫ T

0
ckk(t) Z̃

n,N
jk (t) dt

and

V (0)n,N,Mjk,T =

∫ T

0
ρ̂Mjk(θnj (t))2 cjj(t) dt

[
N

∫ t

0
dn,Njk (t, u)2 ckk(u) du

]
V (1)n,N,Mjk,T =

∫ T

0
ρ̂Mjk(θnj (t)) cjk(t) dt

[
N

∫ t

0
dn,Njk (t, u) dn,Njk (u, t) ρ̂Mjk(θnj (u)) cjk(u) du

]
V (2)n,N,Mjk,T =

∫ T

0
ckk(t) dt

[
N

∫ t

0
dn,Njk (u, t)2 ρ̂Mjk(θnj (u))2 cjj(u) du

]
.
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Let consider the asymptotically negligible terms,

∣∣O(0)n,N,Mjk,T

∣∣2 = N2

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t))2 ρ̂Mjk(θnj (u))2 cjj(t) cjj(u)Zn,Njk (t)Zn,Njk (u) dt du

∣∣O(1)n,N,Mjk,T

∣∣2 = N2

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mjk(θnj (u)) cjk(t) cjk(u) Z̆n,Njk (t) Z̆n,Njk (u) dtdu

∣∣O(2)n,N,Mjk,T

∣∣2 = N2

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mjk(θnj (u)) cjk(t) cjk(u) Z̊n,Njk (t) Z̊n,Njk (u) dt du

∣∣O(3)n,N,Mjk,T

∣∣2 = N2

∫ T

0

∫ T

0
ckk(t) ckk(u) Z̃n,Njk (t) Z̃n,Njk (u) dt du,

by (2.3), assumption SU, lemma 6,

E
(∣∣O(0)n,N,Mjk,T

∣∣2) ≤ KN2

∫ T

0

∫ T

0
dt du

[ ∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

∫ v

0
dn,Njk (v, ϑ)2 dϑ

]
then by (A.6),

E
(∣∣O(0)n,N,Mjk,T

∣∣2) ≤ KT 3p−2
p N1−2/p. (E.9)

By similar arguments, we can show the same upper bound applies to E
(∣∣O(1)n,N,Mjk,T

∣∣2) and E
(∣∣O(2)n,N,Mjk,T

∣∣2),
as well as E

(∣∣O(3)n,N,Mjk,T

∣∣2). Let p ∈ (1, 2) and use Jensen’s inequality and Markov’s inequality, we
have

Lemma 8. Under the assumptions of theorem 2, ∀j, k = 1, · · · , d,

max
r=0,1,2,3

O(r)n,N,Mjk,T
P−→ 0

Now, let’s consider the terms which contribute to the asymptotic variance. By (3.3) and lemma 4,
we have the following lemma:

Lemma 9. Under the assumptions of theorem 2, ∀j, k = 1, · · · , d,

V (0)n,N,Mjk,T
P−→

∫ T

0
ρjk(t)

2 θ̃jk,jk(t) cjj(t) ckk(t) dt

V (1)n,N,Mjk,T
P−→

∫ T

0
ρjk(t)

2 θ̌jk,jk(t) cjk(t)
2 dt

V (2)n,N,Mjk,T
P−→

∫ T

0
ρjk(t)

2 θ̀jk,jk(t) cjj(t) ckk(t) dt.

Theorem 2 then follows from (E.3), (E.5), (E.7), and lemma 7, 8, 9.

F Proof of theorem 3, proposition 3, proposition 4

We can write

N1/2
[
Ŝ(g)nT − S(g)T

]
= S(0)n,N,M,B

T + S(1)n,N,MT + S(2)n,N,MT (F.1)

N1/2
[
Ŝ(g)nT − S(g)n,NT

]
= S(0)n,N,M,B

T + S(1)n,N,MT + S(2)n,N,MT ,
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where

S(0)n,N,M,B
T := N1/2

[
B∑
h=1

g
(
ĉn,N,M (hT/B)

)
T/B −

∫ T

0
g
(
ĉn,N,M (t)

)
dt

]

S(1)n,N,MT := N1/2

∫ T

0

{
g
(
ĉn,N,M (t)

)
− g(c(t))−

d∑
j,k=1

∂jkg(c(t))
[
ĉn,N,Mjk (t)− cjk(t)

]}
dt

S(2)n,N,MT :=

d∑
j,k=1

N1/2

∫ T

0
∂jkg(c(t))

[
ĉn,N,Mjk (t)− cjk(t)

]
dt,

and

S(1)n,N,MT := N1/2

∫ T

0

{
g
(
ĉn,N,M (t)

)
− g
(
cn,N (t)

)
−

d∑
j,k=1

∂jkg
(
cn,N (t)

)[
ĉn,N,Mjk (t)− cn,Njk (t)

]}
dt

S(2)n,N,MT :=
d∑

j,k=1

N1/2

∫ T

0
∂jkg

(
cn,N (t)

)[
ĉn,N,Mjk (t)− dn,Njk (t, t) cjk(t)

]
dt,

Use an argument similar to that on S(0)n,N,M,B
jk,T in appendix E, it follows∥∥S(0)n,N,M,B
T

∥∥ P−→ 0. (F.2)

By (2.3),∥∥∥g(ĉn,N,M (t)
)
− g(c(t))−

∑
j,k

∂jkg(c(t))
[
ĉn,N,Mjk (t)− cjk(t)

]∥∥∥ = Op
(
‖ĉn,N,M (t)− c(t)‖2

)
∥∥∥g(ĉn,N,M (t)

)
− g
(
c(t)
)
−
∑
j,k

∂jkg
(
cn,N (t)

)[
ĉn,N,Mjk (t)− cn,Njk (t)

]∥∥∥ = Op
(
‖ĉn,N,M (t)− cn,N (t)‖2

)
,

therefore ∥∥S(1)n,N,MT

∥∥ ≤ KTN1/2 sup
t∈[0,T ]

∥∥ĉn,N,M (t)− c(t)
∥∥2

∥∥S(1)n,N,MT

∥∥ ≤ KTN1/2 sup
t∈[0,T ]

∥∥ĉn,N,M (t)− cn,N (t)
∥∥2
.

According to proposition 2, under conditions of theorem 3,

E
∥∥S(1)n,N,MT

∥∥ ≤ KT M

N1/2
.

Notice that

ĉn,N,Mjk (t)− cjk(t) = Q(t, 0)n,N,Mjk,T +Q(t, 1)n,N,Mjk,T + Ω(t, 1)n,N,Mjk,T + Ω(t, 2)N,Mjk,T ,

where Q(t, 0)n,N,Mjk,T and Q(t, 1)n,N,Mjk,T are defined by (D.3) and

Ω(t, 1)n,N,Mjk,T =
1

T

∫ T

0

[
FM

( t− θnj (u)

T

)
− FM

( t− u
T

)]
dn,Njk (u, u) cjk(u) du

Ω(t, 2)N,Mjk,T =
1

T

∫ T

0
FM

( t− u
T

)
dn,Njk (u, u) cjk(u) du− dn,Njk (t, t) cjk(t),

41



by a similar proof to that of proposition 2,

E
∥∥S(1)n,N,MT

∥∥ ≤ KT M

N1/2
.

Thus by (3.9) and Markov’s inequality,∥∥S(1)n,N,MT

∥∥+
∥∥S(1)n,N,MT

∥∥ P−→ 0. (F.3)

F.1 stable convergence

Let ρjk(t) = ∂jkg(c(t)) and ρ
jk

(t) = ∂jkg
(
cn,N (t)

)
, we need to study

S(2)n,N,MT =

d∑
j,k=1

N1/2

∫ T

0
ρjk(t)

[
ĉn,N,Mjk (t)− cjk(t)

]
dt

S(2)n,N,MT =

d∑
j,k=1

N1/2

∫ T

0
ρ
jk

(t)
[
ĉn,N,Mjk (t)− dn,Njk (t, t) cjk(t)

]
dt.

Based on (E.3),

S(2)n,N,MT =

d∑
j,k=1

[
o(0)n,Mjk,T + o(1)n,N,Mjk,T + e(0)n,N,Mjk,T + e(1)n,N,Mjk,T

]
,

where o(0)n,Mjk,T , o(1)n,N,Mjk,T , e(0)n,N,Mjk,T , e(1)n,N,Mjk,T are defined in (E.2) and (E.4).
Similarly,

S(2)n,N,MT =

d∑
j,k=1

[
o(0)n,Mjk,T + e(0)n,N,Mjk,T + e(1)n,N,Mjk,T

]
.

where

o(0)n,Mjk,T = N1/2

nj∑
h=1

∫
Ijh

[
ρ̂M
jk

(
τ jh
)
− ρ

jk
(t)
]
dn,Njk (t, t) cjk(t) dt

e(0)n,N,Mjk,T = N1/2

∫ T

0
ρ̂M
jk

(θnj (t))σj·(t) dW (t)

∫ t

0
dn,Njk (t, u)σk·(u) dW (u)

e(1)n,N,Mjk,T = N1/2

∫ T

0
σk·(t) dW (t)

∫ t

0
ρ̂M
jk

(θnj (u)) dn,Njk (u, t)σj·(u) dW (u).

Here we show stable convergence of S(2)n,N,MT . The asymptotic analysis of S(2)n,N,MT goes along
similar lines.

By (E.6),

o(1)n,N,Mjk,T = − π2

6T 2
(2N + 1)2N1/2

∫ T

0
ρ̂Mjk(θnj (t)) cjk(t)

[
θnj (t)− θnk (t)

]2
dt+Op

(
N9/2 n−4

)
,

then If N = bκn4/5c, by (3.3) and assumption Θ,

o(1)n,N,Mjk,T
P−→ −2π2κ5/2

3T 2

∫ T

0
∂jkg

(
c(t)
)
cjk(t) %jk(t) dt. (F.4)
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Now, let’s study Ψn,N,M
T :=

∑d
j,k=1

[
e(0)n,N,Mjk,T + e(1)n,N,Mjk,T

]
. Because of lemma 7, it remains to

study the limit of the bracket
〈
Ψn,N,M ,Ψn,N,M

〉
T

in probability,

〈
Ψn,N,M ,Ψn,N,M

〉
T

=

d∑
j,k,l,m=1

[〈
e(0)n,N,Mjk , e(0)n,N,Mlm

〉
T

+
〈
e(0)n,N,Mjk , e(1)n,N,Mlm

〉
T

+
〈
e(1)n,N,Mjk , e(0)n,N,Mlm

〉
T

+
〈
e(1)n,N,Mjk , e(0)n,N,Mlm

〉
T

]
,

and by (E.8),

〈
e(0)n,N,Mjk , e(0)n,N,Mlm

〉
T

= N

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mlm(θnl (t)) cjl(t)U

n,N
jk (t)Un,Nlm (t) dt

〈
e(0)n,N,Mjk , e(1)n,N,Mlm

〉
T

= N

∫ T

0
ρ̂Mjk(θnj (t)) cjm(t)Un,Njk (t) Ũn,N,Mlm (t) dt

〈
e(1)n,N,Mjk , e(0)n,N,Mlm

〉
T

= N

∫ T

0
ρ̂Mlm(θnl (t)) ckl(t) Ũ

n,N,M
jk (t)Un,Nlm (t) dt

〈
e(1)n,N,Mjk , e(1)n,N,Mlm

〉
T

= N

∫ T

0
ckm(t) Ũn,Njk (t) Ũn,N,Mlm (t) dt,

so by (C.3), 〈
Ψn,N,M ,Ψn,N,M

〉
T

=
d∑

j,k,l,m=1

[
3∑
r=0

O(r)n,N,Mjk,lm,T +
3∑
r=0

V (r)n,N,Mjk,lm,T

]
, (F.5)

where

O(0)n,N,Mjk,lm,T = N

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mlm(θnl (t)) cjl(t)

[
Zn,Mjk,lm(t) + Zn,Mlm,jk(t)

]
dt

O(1)n,N,Mjk,lm,T = N

∫ T

0

[
ρ̂Mjk(θnj (t)) cjm(t) Z̆n,Njk,lm(t) + ρ̂Mlm(θnl (t)) ckl(t) Z̆

n,N
lm,jk(t)

]
dt

O(2)n,N,Mjk,lm,T = N

∫ T

0

[
ρ̂Mjk(θnj (t)) cjm(t) Z̊n,Njk,lm(t) + ρ̂Mlm(θnl (t)) ckl(t) Z̊

n,N
lm,jk(t)

]
dt

O(3)n,N,Mjk,lm,T = N

∫ T

0
ckm(t)

[
Z̃n,Mjk,lm(t) + Z̃n,Mlm,jk(t)

]
dt,

and

V (0)n,N,Mjk,lm,T =

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mlm(θnl (t)) cjl(t) dt

[
N

∫ t

0
dn,Njk (t, u) dn,Nlm (t, u) ckm(u) du

]
V (1)n,N,Mjk,lm,T =

∫ T

0
ρ̂Mjk(θnj (t)) cjm(t) dt

[
N

∫ t

0
dn,Njk (t, u) dn,Nlm (u, t) ρ̂Mlm(θnl (u)) ckl(u) du

]
V (2)n,N,Mjk,lm,T =

∫ T

0
ρ̂Mlm(θnl (t)) ckl(t) dt

[
N

∫ t

0
dn,Njk (u, t) dn,Nlm (t, u) ρ̂Mjk(θnj (u)) cjm(u) du

]
V (3)n,N,Mjk,lm,T =

∫ T

0
ckm(t) dt

[
N

∫ t

0
dn,Njk (u, t) dn,Nlm (u, t) ρ̂Mjk(θnj (u)) ρ̂Mlm(θnl (u)) cjl(u) du

]
.
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To show the asymptotic negligibility of O(r)n,N,Mjk,lm,T for r = 0, · · · , 3, by symmetry, it suffices to
study the following terms:

φ(0)n,N,Mjk,lm,T := N

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mlm(θnl (t)) cjl(t)Z

n,N
jk,lm(t) dt

φ(1)n,N,Mjk,lm,T := N

∫ T

0
ρ̂Mjk(θnj (t)) cjm(t) Z̆n,Njk,lm(t) dt

φ(2)n,N,Mjk,lm,T := N

∫ T

0
ρ̂Mjk(θnj (t)) cjm(t) Z̊n,Njk,lm(t) dt

φ(3)n,N,Mjk,lm,T := N

∫ T

0
ckm(t) Z̃n,Njk,lm(t) dt.

Note ∣∣φ(0)n,N,Mjk,lm,T

∣∣2 = N2

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mlm(θnl (t)) ρ̂Mjk(θnj (u)) ρ̂Mlm(θnl (u))

cjl(t) cjl(u)Zn,Njk,lm(t)Zn,Njk,lm(u) dt du∣∣φ(1)n,N,Mjk,lm,T

∣∣2 = N2

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mjk(θnj (u)) cjm(t) cjm(u) Z̆n,Njk,lm(t) Z̆n,Njk,lm(u) dt du

∣∣φ(2)n,N,Mjk,lm,T

∣∣2 = N2

∫ T

0

∫ T

0
ρ̂Mjk(θnj (t)) ρ̂Mjk(θnj (u)) cjm(t) cjm(u) Z̊n,Njk,lm(t) Z̊n,Njk,lm(u) dt du

∣∣φ(3)n,N,Mjk,lm,T

∣∣2 = N2

∫ T

0

∫ T

0
ckm(t) ckm(u) Z̃n,Njk,lm(t) Z̃n,Njk,lm(u) dtdu,

by (2.3), assumption SU, lemma 6,

E
(∣∣φ(0)n,N,Mjk,lm,T

∣∣2) ≤ KN2

∫ T

0

∫ T

0
dtdu

[ ∫ t∧u

0
dn,Njk (t, v) dn,Njk (u, v) dv

∫ v

0
dn,Nlm (v, ϑ)2 dϑ

]
,

by (A.6),

E
(∣∣φ(0)n,N,Mjk,lm,T

∣∣2) ≤ KT 3p−2
p N1−2/p. (F.6)

By similar arguments, we can show the same upper bound also applies to E
(∣∣φ(1)n,N,Mjk,lm,T

∣∣2),
E
(∣∣φ(2)n,N,Mjk,lm,T

∣∣2), E
(∣∣φ(3)n,N,Mjk,lm,T

∣∣2). Thus by taking p ∈ (1, 2) and using Jensen’s inequality and

Markov’s inequality, we can prove that φ(r)n,N,Mjk,lm,T , r = 0, 1, 2, 3 all converge to 0 in probability.

Lemma 10. Under the assumptions of theorem 3, ∀j, k, l,m = 1, · · · , d,

max
r=0,1,2,3

φ(r)n,N,Mjk,lm,T
P−→ 0.

By (3.3) and lemma 4, we have
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Lemma 11. Under the assumptions of theorem 3, ∀j, k, l,m = 1, · · · , d,

V (0)n,N,Mjk,lm,T
P−→

∫ T

0
ρjk(t) ρlm(t) θ̃jk,lm(t) cjl(t) ckm(t) dt

V (1)n,N,Mjk,lm,T
P−→

∫ T

0
ρjk(t) ρlm(t) θ́jk,lm(t) cjm(t) ckl(t) dt

V (2)n,N,Mjk,lm,T
P−→

∫ T

0
ρjk(t) ρlm(t) θ̌jk,lm(t) cjm(t) ckl(t) dt

V (3)n,N,Mjk,lm,T
P−→

∫ T

0
ρjk(t) ρlm(t) θ̀jk,lm(t) cjl(t) ckm(t) dt.

In view of (F.5), theorem 3 follows from (E.5), (E.7), lemma 7, 10 and 11; proposition 3 follows
from (E.5), (F.4), lemma 7, 10 and 11.

The stable convergence and the asymptotic variance of S(2)n,N,MT can be shown by an analogous
derivation, from which proposition 4 follows.
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with jump and noise. working paper.

45



Clément, E., Delattre, S., and Gloter, A. (2013). An infinite dimensional convolution theorem with
applications to the effiicent estimation of the integrated volatility. Stochastic Processes and their
Applications, 123:2500–2521.

Clément, E. and Gloter, A. (2011). Limit theorems in the fourier transform method for the estimation
of multivariate volatility. Stochastic Processes and their Applications, 121:1097–1124.

Cuchiero, C. and Teichmann, J. (2015). Fourier transform methods for pathwise covariance estimation
in the presence of jumps. Stochastic Processes and their Applications, 125:116–160.

Fan, J. and Wang, Y. (2007). Multi-scale jump and volatility analysis for high-frequency financial
data. Journal of the American Statistical Association, 102(480):1349–1362.

Jacod, J. (1997). On continuous conditional gaussian martingales and stable convergence in law. In:
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